Nuprl Lemma : r2-left-pos-angle

a,b,c:ℝ^2.  (r2-left(a;b;c)  rv-pos-angle(2;a;b;c))


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  rv-pos-angle: rv-pos-angle(n;a;b;c) r2-left: r2-left(p;q;r) all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A real-vec: ^n int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B lelt: i ≤ j < k less_than: a < b squash: T true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b iff: ⇐⇒ Q eq_int: (i =z j) nequal: a ≠ b ∈  rless: x < y sq_exists: x:{A| B[x]} nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_implies:  Q cand: c∧ B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y itermConstant: "const" req_int_terms: t1 ≡ t2
Lemmas referenced :  rless_wf int-to-real_wf r2-det_wf real-vec_wf false_wf le_wf dot-product_wf real-vec-sub_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int rminus_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf rless_functionality req_weakening r2-det-is-dot-product radd_wf rmul_wf nat_plus_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf rabs_wf real-vec-norm_wf r2-dot-product rabs_functionality square-rless-implies rleq_weakening_equal real-vec-norm-nonneg rleq_wf square-nonneg rleq_functionality_wrt_implies rmul_functionality_wrt_rleq2 rnexp_wf rnexp2-nonneg req_inversion rabs-rnexp req_transitivity rnexp-rmul rmul_functionality real-vec-norm-squared rabs-of-nonneg rnexp2 rnexp-rless less_than_wf rnexp0 rless-implies-rless real_term_polynomial itermSubtract_wf itermMultiply_wf itermAdd_wf itermVar_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rsub_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality dependent_set_memberEquality independent_pairFormation because_Cache lambdaEquality setElimination rename unionElimination equalityElimination productElimination independent_isectElimination applyEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality isect_memberEquality voidEquality computeAll functionEquality addLevel impliesFunctionality inlFormation productEquality int_eqEquality

Latex:
\mforall{}a,b,c:\mBbbR{}\^{}2.    (r2-left(a;b;c)  {}\mRightarrow{}  rv-pos-angle(2;a;b;c))



Date html generated: 2017_10_03-AM-11_49_13
Last ObjectModification: 2017_04_11-PM-05_35_06

Theory : reals


Home Index