Nuprl Lemma : r2-dot-product
∀[a,b:ℝ^2].  (a⋅b = (((a 0) * (b 0)) + ((a 1) * (b 1))))
Proof
Definitions occuring in Statement : 
dot-product: x⋅y
, 
real-vec: ℝ^n
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dot-product: x⋅y
, 
subtract: n - m
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
dot-product_wf, 
false_wf, 
le_wf, 
radd_wf, 
rmul_wf, 
lelt_wf, 
real-vec_wf, 
rsum_wf, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
equal-wf-base, 
int_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
req_weakening, 
req_functionality, 
rsum-split-first, 
radd_functionality, 
rsum-single
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
isect_memberEquality, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
setEquality
Latex:
\mforall{}[a,b:\mBbbR{}\^{}2].    (a\mcdot{}b  =  (((a  0)  *  (b  0))  +  ((a  1)  *  (b  1))))
Date html generated:
2017_10_03-AM-10_48_48
Last ObjectModification:
2017_04_08-AM-11_48_43
Theory : reals
Home
Index