Nuprl Lemma : r2-dot-product

[a,b:ℝ^2].  (a⋅(((a 0) (b 0)) ((a 1) (b 1))))


Proof




Definitions occuring in Statement :  dot-product: x⋅y real-vec: ^n req: y rmul: b radd: b uall: [x:A]. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dot-product: x⋅y subtract: m nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T true: True so_lambda: λ2x.t[x] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s] subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness dot-product_wf false_wf le_wf radd_wf rmul_wf lelt_wf real-vec_wf rsum_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermConstant_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_wf int_seg_wf decidable__le intformle_wf int_formula_prop_le_lemma equal-wf-base int_subtype_base intformeq_wf int_formula_prop_eq_lemma req_weakening req_functionality rsum-split-first radd_functionality rsum-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation hypothesis hypothesisEquality applyEquality because_Cache imageMemberEquality baseClosed independent_functionElimination isect_memberEquality lambdaEquality setElimination rename productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll addEquality setEquality

Latex:
\mforall{}[a,b:\mBbbR{}\^{}2].    (a\mcdot{}b  =  (((a  0)  *  (b  0))  +  ((a  1)  *  (b  1))))



Date html generated: 2017_10_03-AM-10_48_48
Last ObjectModification: 2017_04_08-AM-11_48_43

Theory : reals


Home Index