Nuprl Lemma : r2-det-is-dot-product

[a,b,c:ℝ^2].  (|abc| b⋅λi.if (i =z 0) then -(c 1) else fi )


Proof




Definitions occuring in Statement :  r2-det: |pqr| dot-product: x⋅y real-vec-sub: Y real-vec: ^n req: y rminus: -(x) ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] apply: a lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-sub: Y dot-product: x⋅y r2-det: |pqr| subtract: m nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: real-vec: ^n int_seg: {i..j-} all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B lelt: i ≤ j < k less_than: a < b squash: T true: True bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: λ2x.t[x] decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_apply: x[s] nequal: a ≠ b ∈  eq_int: (i =z j) itermConstant: "const" req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness r2-det_wf dot-product_wf false_wf le_wf real-vec-sub_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int rminus_wf real-vec_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_seg_wf rsub_wf radd_wf rmul_wf rsum_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermConstant_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_wf intformeq_wf int_formula_prop_eq_lemma decidable__le intformle_wf int_formula_prop_le_lemma equal-wf-base int_subtype_base real_term_polynomial itermSubtract_wf itermMultiply_wf itermMinus_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 req_functionality req_weakening rsum-split-first radd_functionality rsum-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation because_Cache lambdaEquality setElimination rename unionElimination equalityElimination productElimination independent_isectElimination applyEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination isect_memberEquality int_eqEquality intEquality voidEquality computeAll addEquality setEquality

Latex:
\mforall{}[a,b,c:\mBbbR{}\^{}2].    (|abc|  =  a  -  b\mcdot{}\mlambda{}i.if  (i  =\msubz{}  0)  then  -(c  -  b  1)  else  c  -  b  0  fi  )



Date html generated: 2017_10_03-AM-11_40_36
Last ObjectModification: 2017_04_11-PM-05_29_09

Theory : reals


Home Index