Nuprl Lemma : rabs-int-rmul
∀[k:ℤ]. ∀[x:ℝ].  (|k * x| = |k| * |x|)
Proof
Definitions occuring in Statement : 
rabs: |x|, 
int-rmul: k1 * a, 
req: x = y, 
real: ℝ, 
absval: |i|, 
uall: ∀[x:A]. B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
implies: P ⇒ Q, 
true: True, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rabs_wf, 
int-rmul_wf, 
absval_wf, 
nat_wf, 
real_wf, 
req_wf, 
rmul_wf, 
int-to-real_wf, 
req_weakening, 
uiff_transitivity2, 
uiff_transitivity, 
req_functionality, 
rabs_functionality, 
int-rmul-req, 
rabs-rmul, 
squash_wf, 
true_wf, 
rabs-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
intEquality, 
natural_numberEquality, 
independent_isectElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x:\mBbbR{}].    (|k  *  x|  =  |k|  *  |x|)
Date html generated:
2016_10_26-AM-09_08_10
Last ObjectModification:
2016_08_28-PM-02_36_52
Theory : reals
Home
Index