Step * 1 1 1 1 1 of Lemma rational-IVT

.....assertion..... 
1. : ℝ
2. : ℝ
3. (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. [g] {x:ℝx ∈ [a, b]}  ⟶ ℝ
5. [%] (a < b)
∧ ((g[a] g[b]) < r0)
∧ (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (g[x] g[y])))
∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [a, b])  (g[ratreal(r)] ratreal(f[r]))))
6. ∀n:ℕ+(ratreal(<(a (2 n)) 2, n>above within 1/n)
7. ∀n:ℕ+(ratreal(<(b (2 n)) 2, n>(below within 1/n))
⊢ ↓∃m:{1...}. (↑((λn.((a (2 n)) 4 ≤(2 n) ∧b fst(ratmul(f[<(a (2 n)) 2, n>];f[<(b (2 n)) 2, n>]\000C)) <0)) m))
BY
((Unhide THENA Auto)
   THEN Reduce 0
   THEN Assert ⌜∃n:ℕ+
                 ((above within 1/n ≤ (below within 1/n))
                 ∧ ((g[above within 1/n] g[(below within 1/n)]) < r0))⌝⋅}

1
.....assertion..... 
1. : ℝ
2. : ℝ
3. (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. {x:ℝx ∈ [a, b]}  ⟶ ℝ
5. (a < b)
∧ ((g[a] g[b]) < r0)
∧ (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (g[x] g[y])))
∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [a, b])  (g[ratreal(r)] ratreal(f[r]))))
6. ∀n:ℕ+(ratreal(<(a (2 n)) 2, n>above within 1/n)
7. ∀n:ℕ+(ratreal(<(b (2 n)) 2, n>(below within 1/n))
⊢ ∃n:ℕ+((above within 1/n ≤ (below within 1/n)) ∧ ((g[above within 1/n] g[(below within 1/n)]) < r0))

2
1. : ℝ
2. : ℝ
3. (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. {x:ℝx ∈ [a, b]}  ⟶ ℝ
5. (a < b)
∧ ((g[a] g[b]) < r0)
∧ (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (g[x] g[y])))
∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [a, b])  (g[ratreal(r)] ratreal(f[r]))))
6. ∀n:ℕ+(ratreal(<(a (2 n)) 2, n>above within 1/n)
7. ∀n:ℕ+(ratreal(<(b (2 n)) 2, n>(below within 1/n))
8. ∃n:ℕ+((above within 1/n ≤ (below within 1/n)) ∧ ((g[above within 1/n] g[(below within 1/n)]) < r0))
⊢ ↓∃m:{1...}. (↑((a (2 m)) 4 ≤(2 m) ∧b fst(ratmul(f[<(a (2 m)) 2, m>];f[<(b (2 m)) 2, m>])) <z\000C 0))


Latex:


Latex:
.....assertion..... 
1.  a  :  \mBbbR{}
2.  b  :  \mBbbR{}
3.  f  :  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})
4.  [g]  :  \{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    {}\mrightarrow{}  \mBbbR{}
5.  [\%]  :  (a  <  b)
\mwedge{}  ((g[a]  *  g[b])  <  r0)
\mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
\mwedge{}  (\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((ratreal(r)  \mmember{}  [a,  b])  {}\mRightarrow{}  (g[ratreal(r)]  =  ratreal(f[r]))))
6.  \mforall{}n:\mBbbN{}\msupplus{}.  (ratreal(<(a  (2  *  n))  +  2,  4  *  n>)  =  above  a  within  1/n)
7.  \mforall{}n:\mBbbN{}\msupplus{}.  (ratreal(<(b  (2  *  n))  -  2,  4  *  n>)  =  (below  b  within  1/n))
\mvdash{}  \mdownarrow{}\mexists{}m:\{1...\}
        (\muparrow{}((\mlambda{}n.((a  (2  *  n))  +  4  \mleq{}z  b  (2  *  n)  \mwedge{}\msubb{}  fst(ratmul(f[<(a  (2  *  n))  +  2,  4  *  n>];f[<(b  (2  *  n))  -  \000C2,  4  *  n>]))  <z  0))  m))


By


Latex:
((Unhide  THENA  Auto)
  THEN  Reduce  0
  THEN  Assert  \mkleeneopen{}\mexists{}n:\mBbbN{}\msupplus{}
                              ((above  a  within  1/n  \mleq{}  (below  b  within  1/n))
                              \mwedge{}  ((g[above  a  within  1/n]  *  g[(below  b  within  1/n)])  <  r0))\mkleeneclose{}\mcdot{})




Home Index