Step
*
1
1
1
1
of Lemma
rational-approx-implies-req
1. k : ℕ+
2. x : ℝ
3. a : ℕ+ ⟶ ℤ
4. ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)))
5. ∀n,m:ℕ+. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| ≤ ((r(k)/r(n)) + (r(k)/r(m))))
6. n : ℕ+
7. m : ℕ+
8. r0 < |r(2 * n * m)|
9. r0 < (r1/|r(2 * n * m)|)
10. (((r(2) * r(k)) * (r(n) + r(m))) * |(r1/r(2 * n * m))|) = ((r(k)/r(m)) + (r(k)/r(n)))
11. (((r(m) * r(a n)) - r(n) * r(a m)) * (r1/r(2 * n * m))) = ((r(a n)/r(2 * n)) - (r(a m)/r(2 * m)))
⊢ |((r(m) * r(a n)) - r(n) * r(a m)) * (r1/r(2 * n * m))| ≤ ((r(k)/r(m)) + (r(k)/r(n)))
BY
{ (RWW "-1 5" 0 THEN Auto) }
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. x : \mBbbR{}
3. a : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. \mforall{}n:\mBbbN{}\msupplus{}. (|x - (r(a n)/r(2 * n))| \mleq{} (r(k)/r(n)))
5. \mforall{}n,m:\mBbbN{}\msupplus{}. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| \mleq{} ((r(k)/r(n)) + (r(k)/r(m))))
6. n : \mBbbN{}\msupplus{}
7. m : \mBbbN{}\msupplus{}
8. r0 < |r(2 * n * m)|
9. r0 < (r1/|r(2 * n * m)|)
10. (((r(2) * r(k)) * (r(n) + r(m))) * |(r1/r(2 * n * m))|) = ((r(k)/r(m)) + (r(k)/r(n)))
11. (((r(m) * r(a n)) - r(n) * r(a m)) * (r1/r(2 * n * m)))
= ((r(a n)/r(2 * n)) - (r(a m)/r(2 * m)))
\mvdash{} |((r(m) * r(a n)) - r(n) * r(a m)) * (r1/r(2 * n * m))| \mleq{} ((r(k)/r(m)) + (r(k)/r(n)))
By
Latex:
(RWW "-1 5" 0 THEN Auto)
Home
Index