Nuprl Lemma : real-fun-implies-sfun-ext

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f:[a, b] ⟶ℝ].  real-sfun(f;a;b) supposing real-fun(f;a;b)


Proof




Definitions occuring in Statement :  real-sfun: real-sfun(f;a;b) real-fun: real-fun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y real: uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T real-fun-implies-sfun real-weak-Markov rneq-if-rabs
Lemmas referenced :  real-fun-implies-sfun real-weak-Markov rneq-if-rabs
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    real-sfun(f;a;b)  supposing  real-fun(f;a;b)



Date html generated: 2017_01_09-AM-08_59_35
Last ObjectModification: 2016_11_21-PM-03_55_06

Theory : reals


Home Index