Nuprl Lemma : real-fun-implies-sfun
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:[a, b] ⟶ℝ].  real-sfun(f;a;b) supposing real-fun(f;a;b)
Proof
Definitions occuring in Statement : 
real-sfun: real-sfun(f;a;b)
, 
real-fun: real-fun(f;a;b)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rleq: x ≤ y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
real-fun: real-fun(f;a;b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rfun: I ⟶ℝ
, 
prop: ℙ
, 
real-sfun: real-sfun(f;a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
not: ¬A
, 
guard: {T}
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
false: False
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
req_wf, 
real_wf, 
i-member_wf, 
rccint_wf, 
rneq_wf, 
set_wf, 
real-fun_wf, 
rfun_wf, 
rleq_wf, 
real-weak-Markov, 
rneq-cases, 
not_wf, 
member_rccint_lemma, 
req_inversion, 
rneq_functionality, 
req_weakening, 
rneq_irrefl, 
rmin-rleq, 
rleq-rmax, 
sq_stable__rleq, 
rccint-icompact, 
rmin_ub, 
rmax_wf, 
rmin_wf, 
req_functionality, 
rmin_functionality, 
rmax_functionality, 
rmin-req, 
rleq_functionality, 
rmax-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
independent_isectElimination, 
unionElimination, 
inlFormation, 
inrFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
productEquality, 
independent_pairFormation, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    real-sfun(f;a;b)  supposing  real-fun(f;a;b)
Date html generated:
2019_10_30-AM-07_17_14
Last ObjectModification:
2018_08_23-AM-11_24_31
Theory : reals
Home
Index