Nuprl Lemma : real-fun-implies-sfun

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f:[a, b] ⟶ℝ].  real-sfun(f;a;b) supposing real-fun(f;a;b)


Proof




Definitions occuring in Statement :  real-sfun: real-sfun(f;a;b) real-fun: real-fun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y real: uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T real-fun: real-fun(f;a;b) all: x:A. B[x] implies:  Q rfun: I ⟶ℝ prop: real-sfun: real-sfun(f;a;b) so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q not: ¬A guard: {T} top: Top iff: ⇐⇒ Q and: P ∧ Q false: False squash: T sq_stable: SqStable(P) rev_implies:  Q cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness req_wf real_wf i-member_wf rccint_wf rneq_wf set_wf real-fun_wf rfun_wf rleq_wf real-weak-Markov rneq-cases not_wf member_rccint_lemma req_inversion rneq_functionality req_weakening rneq_irrefl rmin-rleq rleq-rmax sq_stable__rleq rccint-icompact rmin_ub rmax_wf rmin_wf req_functionality rmin_functionality rmax_functionality rmin-req rleq_functionality rmax-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality because_Cache independent_functionElimination hypothesis setElimination rename setEquality lambdaFormation independent_isectElimination unionElimination inlFormation inrFormation isect_memberEquality voidElimination voidEquality productElimination productEquality independent_pairFormation imageElimination baseClosed imageMemberEquality dependent_set_memberEquality

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].    real-sfun(f;a;b)  supposing  real-fun(f;a;b)



Date html generated: 2019_10_30-AM-07_17_14
Last ObjectModification: 2018_08_23-AM-11_24_31

Theory : reals


Home Index