Nuprl Lemma : real-vec-dist-equal-iff

[n:ℕ]. ∀[x,y,a,b:ℝ^n].  uiff(d(x;y) d(a;b);x y⋅b⋅b)


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) dot-product: x⋅y real-vec-sub: Y real-vec: ^n req: y nat: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  real-vec-dist: d(x;y) real-vec-norm: ||x|| uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) guard: {T}
Lemmas referenced :  dot-product-nonneg real-vec-sub_wf dot-product_wf real_wf req_witness req_wf rsqrt_wf rleq_wf int-to-real_wf rmul_wf req_functionality rsqrt_functionality req_weakening equal_wf real-vec-dist_wf real-vec_wf nat_wf rsqrt_squared req_inversion req_transitivity rmul_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation because_Cache independent_pairFormation isect_memberFormation independent_functionElimination dependent_set_memberEquality natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality productEquality sqequalRule independent_isectElimination productElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_pairEquality isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y,a,b:\mBbbR{}\^{}n].    uiff(d(x;y)  =  d(a;b);x  -  y\mcdot{}x  -  y  =  a  -  b\mcdot{}a  -  b)



Date html generated: 2017_10_03-AM-10_56_04
Last ObjectModification: 2017_07_28-AM-08_21_28

Theory : reals


Home Index