Nuprl Lemma : real-vec-dist-minus
∀[n:ℕ]. ∀[x,y:ℝ^n].  (d(r(-1)*x;r(-1)*y) = d(x;y))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y), 
real-vec-mul: a*X, 
real-vec: ℝ^n, 
req: x = y, 
int-to-real: r(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b), 
absval: |i|, 
false: False, 
not: ¬A, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
guard: {T}, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
req_witness, 
real-vec-dist_wf, 
real-vec-mul_wf, 
int-to-real_wf, 
real_wf, 
rleq_wf, 
real-vec_wf, 
nat_wf, 
rmul_wf, 
rabs_wf, 
req_functionality, 
real-vec-dist-dilation, 
req_weakening, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
false_wf, 
absval_wf, 
rmul-identity1, 
req_wf, 
squash_wf, 
true_wf, 
rabs-int, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (d(r(-1)*x;r(-1)*y)  =  d(x;y))
Date html generated:
2017_10_03-AM-10_56_19
Last ObjectModification:
2017_06_18-PM-02_51_12
Theory : reals
Home
Index