Nuprl Lemma : real-vec-dist-minus

[n:ℕ]. ∀[x,y:ℝ^n].  (d(r(-1)*x;r(-1)*y) d(x;y))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-mul: a*X real-vec: ^n req: y int-to-real: r(n) nat: uall: [x:A]. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) true: True nat: so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) absval: |i| false: False not: ¬A sq_type: SQType(T) all: x:A. B[x] guard: {T} squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  req_witness real-vec-dist_wf real-vec-mul_wf int-to-real_wf real_wf rleq_wf real-vec_wf nat_wf rmul_wf rabs_wf req_functionality real-vec-dist-dilation req_weakening subtype_base_sq set_subtype_base le_wf int_subtype_base false_wf absval_wf rmul-identity1 req_wf squash_wf true_wf rabs-int iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality minusEquality natural_numberEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality sqequalRule independent_functionElimination isect_memberEquality because_Cache independent_isectElimination productElimination instantiate cumulativity intEquality independent_pairFormation lambdaFormation dependent_set_memberEquality dependent_functionElimination equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (d(r(-1)*x;r(-1)*y)  =  d(x;y))



Date html generated: 2017_10_03-AM-10_56_19
Last ObjectModification: 2017_06_18-PM-02_51_12

Theory : reals


Home Index