Nuprl Lemma : real-vec-dist-sub-zero
∀[n:ℕ]. ∀[p,q:ℝ^n].  (d(p - q;λi.r0) = d(p;q))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y), 
real-vec-sub: X - Y, 
real-vec: ℝ^n, 
req: x = y, 
int-to-real: r(n), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
real-vec: ℝ^n, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
req-vec: req-vec(n;x;y), 
all: ∀x:A. B[x], 
real-vec-sub: X - Y, 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
req_witness, 
real-vec-dist_wf, 
real-vec-sub_wf, 
int-to-real_wf, 
int_seg_wf, 
real_wf, 
rleq_wf, 
real-vec_wf, 
nat_wf, 
real-vec-dist-translation, 
req_functionality, 
req_weakening, 
req_inversion, 
real-vec-dist_functionality, 
req-vec_weakening, 
rsub_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
setEquality, 
independent_functionElimination, 
isect_memberEquality, 
independent_isectElimination, 
productElimination, 
lambdaFormation, 
dependent_functionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:\mBbbR{}\^{}n].    (d(p  -  q;\mlambda{}i.r0)  =  d(p;q))
Date html generated:
2018_05_22-PM-02_25_27
Last ObjectModification:
2018_03_23-AM-10_47_52
Theory : reals
Home
Index