Nuprl Lemma : real-vec-dist-sub-zero

[n:ℕ]. ∀[p,q:ℝ^n].  (d(p q;λi.r0) d(p;q))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-sub: Y real-vec: ^n req: y int-to-real: r(n) nat: uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec: ^n nat: subtype_rel: A ⊆B prop: implies:  Q uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec-sub: Y req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  req_witness real-vec-dist_wf real-vec-sub_wf int-to-real_wf int_seg_wf real_wf rleq_wf real-vec_wf nat_wf real-vec-dist-translation req_functionality req_weakening req_inversion real-vec-dist_functionality req-vec_weakening rsub_wf itermSubtract_wf itermConstant_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_var_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis sqequalRule lambdaEquality natural_numberEquality setElimination rename applyEquality setEquality independent_functionElimination isect_memberEquality independent_isectElimination productElimination lambdaFormation dependent_functionElimination approximateComputation int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:\mBbbR{}\^{}n].    (d(p  -  q;\mlambda{}i.r0)  =  d(p;q))



Date html generated: 2018_05_22-PM-02_25_27
Last ObjectModification: 2018_03_23-AM-10_47_52

Theory : reals


Home Index