Nuprl Lemma : real-vec-extend_wf

[k:ℕ+]. ∀[a:ℝ^k 1]. ∀[z:ℝ].  (a++z ∈ ℝ^k)


Proof




Definitions occuring in Statement :  real-vec-extend: a++z real-vec: ^n real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T subtract: m natural_number: $n
Definitions unfolded in proof :  top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) nat: bfalse: ff prop: lelt: i ≤ j < k uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] nat_plus: + int_seg: {i..j-} real-vec-extend: a++z real-vec: ^n member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_plus_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_plus_properties real-vec_wf real_wf equal_wf lelt_wf int_seg_wf assert_of_lt_int eqtt_to_assert bool_wf subtract_wf lt_int_wf
Rules used in proof :  voidEquality voidElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation approximateComputation isect_memberEquality axiomEquality independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity independent_pairFormation dependent_set_memberEquality hypothesisEquality applyEquality independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation natural_numberEquality hypothesis because_Cache rename setElimination thin isectElimination extract_by_obid sqequalRule functionExtensionality sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[a:\mBbbR{}\^{}k  -  1].  \mforall{}[z:\mBbbR{}].    (a++z  \mmember{}  \mBbbR{}\^{}k)



Date html generated: 2018_07_29-AM-09_44_02
Last ObjectModification: 2018_07_02-PM-00_41_25

Theory : reals


Home Index