Nuprl Lemma : real-vec-extend_wf
∀[k:ℕ+]. ∀[a:ℝ^k - 1]. ∀[z:ℝ].  (a++z ∈ ℝ^k)
Proof
Definitions occuring in Statement : 
real-vec-extend: a++z
, 
real-vec: ℝ^n
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
bfalse: ff
, 
prop: ℙ
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
real-vec-extend: a++z
, 
real-vec: ℝ^n
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_plus_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_plus_properties, 
real-vec_wf, 
real_wf, 
equal_wf, 
lelt_wf, 
int_seg_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
subtract_wf, 
lt_int_wf
Rules used in proof : 
voidEquality, 
voidElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
approximateComputation, 
isect_memberEquality, 
axiomEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_pairFormation, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
extract_by_obid, 
sqequalRule, 
functionExtensionality, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[a:\mBbbR{}\^{}k  -  1].  \mforall{}[z:\mBbbR{}].    (a++z  \mmember{}  \mBbbR{}\^{}k)
Date html generated:
2018_07_29-AM-09_44_02
Last ObjectModification:
2018_07_02-PM-00_41_25
Theory : reals
Home
Index