Nuprl Lemma : real_polynomial_null_orig
∀t:int_term(). t ≡ "0" supposing null(int_term_to_ipoly(t)) = tt
Proof
Definitions occuring in Statement : 
req_int_terms: t1 ≡ t2, 
int_term_to_ipoly: int_term_to_ipoly(t), 
itermConstant: "const", 
int_term: int_term(), 
null: null(as), 
btrue: tt, 
bool: 𝔹, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iPolynomial: iPolynomial(), 
or: P ∨ Q, 
uimplies: b supposing a, 
req_int_terms: t1 ≡ t2, 
prop: ℙ, 
cons: [a / b], 
top: Top, 
not: ¬A, 
false: False, 
ipolynomial-term: ipolynomial-term(p), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
guard: {T}
Lemmas referenced : 
real_term_polynomial, 
int_term_to_ipoly_wf, 
iPolynomial_wf, 
iMonomial_wf, 
list-cases, 
null_nil_lemma, 
req_witness, 
real_term_value_wf, 
itermConstant_wf, 
real_wf, 
equal-wf-base, 
bool_wf, 
req_int_terms_wf, 
ipolynomial-term_wf, 
nil_wf, 
product_subtype_list, 
null_cons_lemma, 
btrue_neq_bfalse, 
cons_wf, 
equal_wf, 
int_term_wf, 
req_inversion
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
unionElimination, 
sqequalRule, 
isect_memberFormation, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
intEquality, 
natural_numberEquality, 
independent_functionElimination, 
functionEquality, 
baseClosed, 
because_Cache, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination
Latex:
\mforall{}t:int\_term().  t  \mequiv{}  "0"  supposing  null(int\_term\_to\_ipoly(t))  =  tt
Date html generated:
2017_10_02-PM-07_20_40
Last ObjectModification:
2017_05_18-PM-05_32_20
Theory : reals
Home
Index