Nuprl Lemma : reals-uncountable-simple
∀f:ℕ ⟶ ℝ. (¬Surj(ℕ;ℝ;f))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
real: ℝ
, 
surject: Surj(A;B;f)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
surject: Surj(A;B;f)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
rneq_irreflexivity, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
rneq_wf, 
real_wf, 
nat_wf, 
surject_wf, 
rless-int, 
int-to-real_wf, 
reals-uncountable
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
voidElimination, 
functionEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  (\mneg{}Surj(\mBbbN{};\mBbbR{};f))
Date html generated:
2016_05_18-AM-07_56_34
Last ObjectModification:
2016_01_17-AM-02_16_44
Theory : reals
Home
Index