Nuprl Lemma : reg-seq-list-add_functionality_wrt_permutation
∀[L,L':ℝ List].
  reg-seq-list-add(L) = reg-seq-list-add(L') ∈ {f:ℕ+ ⟶ ℤ| ||L||-regular-seq(f)}  supposing permutation(ℝ;L;L')
Proof
Definitions occuring in Statement : 
reg-seq-list-add: reg-seq-list-add(L)
, 
real: ℝ
, 
regular-int-seq: k-regular-seq(f)
, 
permutation: permutation(T;L1;L2)
, 
length: ||as||
, 
list: T List
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
squash: ↓T
, 
cons: [a / b]
, 
top: Top
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
true: True
, 
nat_plus: ℕ+
, 
guard: {T}
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
sq_stable: SqStable(P)
, 
real: ℝ
Lemmas referenced : 
decidable__equal_int, 
length_wf, 
real_wf, 
permutation_wf, 
list_wf, 
reg-seq-list-add_wf, 
squash_wf, 
true_wf, 
permutation-length, 
list-cases, 
length_of_nil_lemma, 
nil_wf, 
product_subtype_list, 
length_of_cons_lemma, 
non_neg_length, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
sq_stable__regular-int-seq, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
equal_wf, 
less_than_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
reg-seq-list-add-as-l_sum, 
subtype_rel_list, 
iff_weakening_equal, 
l_sum_functionality_wrt_permutation, 
map_wf, 
permutation-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
unionElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
imageElimination, 
independent_isectElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality, 
lambdaFormation, 
setElimination, 
rename, 
independent_functionElimination, 
addEquality, 
minusEquality, 
universeEquality, 
functionEquality
Latex:
\mforall{}[L,L':\mBbbR{}  List].    reg-seq-list-add(L)  =  reg-seq-list-add(L')  supposing  permutation(\mBbbR{};L;L')
Date html generated:
2017_10_02-PM-07_13_58
Last ObjectModification:
2017_07_28-AM-07_20_07
Theory : reals
Home
Index