Nuprl Lemma : reg-seq-list-add_functionality_wrt_permutation

[L,L':ℝ List].
  reg-seq-list-add(L) reg-seq-list-add(L') ∈ {f:ℕ+ ⟶ ℤ||L||-regular-seq(f)}  supposing permutation(ℝ;L;L')


Proof




Definitions occuring in Statement :  reg-seq-list-add: reg-seq-list-add(L) real: regular-int-seq: k-regular-seq(f) permutation: permutation(T;L1;L2) length: ||as|| list: List nat_plus: + uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q prop: squash: T cons: [a b] top: Top ge: i ≥  le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A true: True nat_plus: + guard: {T} nat: iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) sq_stable: SqStable(P) real:
Lemmas referenced :  decidable__equal_int length_wf real_wf permutation_wf list_wf reg-seq-list-add_wf squash_wf true_wf permutation-length list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma non_neg_length satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf sq_stable__regular-int-seq length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf less_than_wf regular-int-seq_wf nat_plus_wf reg-seq-list-add-as-l_sum subtype_rel_list iff_weakening_equal l_sum_functionality_wrt_permutation map_wf permutation-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesis hypothesisEquality natural_numberEquality unionElimination sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry applyEquality lambdaEquality imageElimination independent_isectElimination promote_hyp hypothesis_subsumption productElimination voidElimination voidEquality dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll imageMemberEquality baseClosed dependent_set_memberEquality lambdaFormation setElimination rename independent_functionElimination addEquality minusEquality universeEquality functionEquality

Latex:
\mforall{}[L,L':\mBbbR{}  List].    reg-seq-list-add(L)  =  reg-seq-list-add(L')  supposing  permutation(\mBbbR{};L;L')



Date html generated: 2017_10_02-PM-07_13_58
Last ObjectModification: 2017_07_28-AM-07_20_07

Theory : reals


Home Index