Nuprl Lemma : rexp-of-nonneg

x:ℝ((r0 ≤ x)  (r1 ≤ e^x))


Proof




Definitions occuring in Statement :  rexp: e^x rleq: x ≤ y int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T}
Lemmas referenced :  rleq_wf int-to-real_wf real_wf radd_wf rexp_wf trivial-rleq-radd rleq_functionality_wrt_implies rleq_weakening_equal rexp-of-nonneg-stronger
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality because_Cache productElimination independent_isectElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  {}\mRightarrow{}  (r1  \mleq{}  e\^{}x))



Date html generated: 2016_10_26-AM-09_27_58
Last ObjectModification: 2016_09_11-PM-07_52_42

Theory : reals


Home Index