Nuprl Lemma : rexp-of-nonneg-stronger
∀x:ℝ. ((r0 ≤ x) 
⇒ ((r1 + x) ≤ e^x))
Proof
Definitions occuring in Statement : 
rexp: e^x
, 
rleq: x ≤ y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
series-sum: Σn.x[n] = a
, 
converges-to: lim n→∞.x[n] = y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
, 
eq_int: (i =z j)
, 
nequal: a ≠ b ∈ T 
, 
int_upper: {i...}
, 
ml-term-to-poly: ml-term-to-poly(t)
, 
nil: []
, 
has-value: (a)↓
, 
req_int_terms: t1 ≡ t2
, 
absval: |i|
, 
rdiv: (x/y)
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
lelt: i ≤ j < k
, 
int_nzero: ℤ-o
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
subtract: n - m
, 
primrec: primrec(n;b;c)
, 
fact: (n)!
Lemmas referenced : 
rexp-is-limit, 
rleq_wf, 
int-to-real_wf, 
real_wf, 
false_wf, 
le_wf, 
nat_wf, 
all_wf, 
rabs_wf, 
rsub_wf, 
rsum_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_seg_wf, 
radd_wf, 
rdiv_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
nat_plus_wf, 
radd_functionality, 
rsum-split-first, 
req_functionality, 
req_weakening, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
ifthenelse_wf, 
int_upper_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_upper_properties, 
rsum_functionality2, 
rsum-zero, 
radd-zero, 
itermSubtract_wf, 
itermAdd_wf, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
req_transitivity, 
real_polynomial_null, 
evalall-sqequal, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rabs-int, 
minus-zero, 
rmul_preserves_rleq, 
rmul_wf, 
itermMultiply_wf, 
rinv_wf2, 
rleq-int, 
real_term_value_mul_lemma, 
rmul-rinv, 
int-rdiv-req, 
rsum_functionality_wrt_rleq, 
rexp_wf, 
rnexp_wf, 
int_subtype_base, 
equal-wf-base, 
int_seg_properties, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
int_seg_subtype_nat, 
fact_wf, 
int-rdiv_wf, 
rleq-limit, 
nequal-le-implies, 
fact0_redex_lemma, 
rnexp_zero_lemma, 
rmul-ident-div, 
rmul-int, 
uiff_transitivity, 
rleq_weakening_equal, 
rnexp1, 
rdiv_functionality, 
rmul-one-both, 
rmul-rdiv-cancel2, 
set_subtype_base, 
fact-non-zero, 
rneq-int, 
zero-mul, 
rnexp-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
dependent_set_memberFormation, 
dependent_set_memberEquality, 
sqequalRule, 
independent_pairFormation, 
setElimination, 
rename, 
lambdaEquality, 
functionEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
addEquality, 
inrFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
minusEquality, 
baseClosed, 
sqleReflexivity, 
mlComputation, 
applyLambdaEquality, 
setEquality, 
applyEquality, 
multiplyEquality, 
imageMemberEquality
Latex:
\mforall{}x:\mBbbR{}.  ((r0  \mleq{}  x)  {}\mRightarrow{}  ((r1  +  x)  \mleq{}  e\^{}x))
Date html generated:
2017_10_03-AM-09_30_26
Last ObjectModification:
2017_07_28-AM-07_49_12
Theory : reals
Home
Index