Nuprl Lemma : fact_wf

[n:ℕ]. ((n)! ∈ ℕ+)


Proof




Definitions occuring in Statement :  fact: (n)! nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  nat_wf mul_nat_plus neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le fact_unroll less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality imageMemberEquality baseClosed unionElimination equalityElimination productElimination because_Cache promote_hyp instantiate cumulativity equalityEquality

Latex:
\mforall{}[n:\mBbbN{}].  ((n)!  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2016_05_15-PM-04_05_06
Last ObjectModification: 2016_01_16-AM-11_01_28

Theory : general


Home Index