Nuprl Lemma : fact-non-zero

[m:ℕ]. ((m)! 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  fact: (n)! nat: uall: [x:A]. B[x] not: ¬A natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False nat: ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B nat_plus: +
Lemmas referenced :  nat_wf nat_plus_wf fact_wf equal_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties fact-positive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename equalityTransitivity equalitySymmetry natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality because_Cache independent_functionElimination equalityEquality

Latex:
\mforall{}[m:\mBbbN{}].  (\mneg{}((m)!  =  0))



Date html generated: 2016_05_15-PM-04_05_39
Last ObjectModification: 2016_01_16-AM-11_02_15

Theory : general


Home Index