Step
*
2
2
3
1
of Lemma
rleq-infn
1. I : {I:Interval| icompact(I)}
2. n : ℤ
3. 0 < n
4. ∀f:{f:I^n - 1 ⟶ ℝ| ∀a,b:I^n - 1. (req-vec(n - 1;a;b)
⇒ ((f a) = (f b)))} . ∀c:ℝ.
c ≤ (infn(n - 1;I) f) supposing ∀a:I^n - 1. (c ≤ (f a))
5. f : {f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))}
6. c : ℝ
7. ∀a:I^n. (c ≤ (f a))
8. ∀z:{x:ℝ| x ∈ I} . (λa.(f a++z) ∈ {f:I^n - 1 ⟶ ℝ| ∀a,b:I^n - 1. (req-vec(n - 1;a;b)
⇒ ((f a) = (f b)))} )
9. z : ℝ
10. z ∈ I
⊢ c ≤ (infn(n - 1;I) (λa.(f a++z)))
BY
{ (BackThruSomeHyp THEN Reduce 0 THEN Auto) }
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. n : \mBbbZ{}
3. 0 < n
4. \mforall{}f:\{f:I\^{}n - 1 {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n - 1. (req-vec(n - 1;a;b) {}\mRightarrow{} ((f a) = (f b)))\} . \mforall{}c:\mBbbR{}.
c \mleq{} (infn(n - 1;I) f) supposing \mforall{}a:I\^{}n - 1. (c \mleq{} (f a))
5. f : \{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\}
6. c : \mBbbR{}
7. \mforall{}a:I\^{}n. (c \mleq{} (f a))
8. \mforall{}z:\{x:\mBbbR{}| x \mmember{} I\}
(\mlambda{}a.(f a++z) \mmember{} \{f:I\^{}n - 1 {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n - 1. (req-vec(n - 1;a;b) {}\mRightarrow{} ((f a) = (f b)))\} )
9. z : \mBbbR{}
10. z \mmember{} I
\mvdash{} c \mleq{} (infn(n - 1;I) (\mlambda{}a.(f a++z)))
By
Latex:
(BackThruSomeHyp THEN Reduce 0 THEN Auto)
Home
Index