Nuprl Lemma : rnexp-req-iff
∀n:ℕ+. ∀x,y:ℝ.  ((r0 ≤ x) 
⇒ (r0 ≤ y) 
⇒ (x = y 
⇐⇒ x^n = y^n))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rnexp: x^k1
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
Lemmas referenced : 
req_wf, 
rnexp_wf, 
nat_plus_subtype_nat, 
rleq_wf, 
int-to-real_wf, 
real_wf, 
nat_plus_wf, 
req_weakening, 
req_functionality, 
rnexp_functionality, 
rleq_antisymmetry, 
rnexp-rleq-iff, 
rleq_weakening, 
req_inversion
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (x  =  y  \mLeftarrow{}{}\mRightarrow{}  x\^{}n  =  y\^{}n))
Date html generated:
2016_05_18-AM-07_19_42
Last ObjectModification:
2015_12_28-AM-00_46_32
Theory : reals
Home
Index