Nuprl Lemma : rnexp-req-iff

n:ℕ+. ∀x,y:ℝ.  ((r0 ≤ x)  (r0 ≤ y)  (x ⇐⇒ x^n y^n))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 req: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) guard: {T}
Lemmas referenced :  req_wf rnexp_wf nat_plus_subtype_nat rleq_wf int-to-real_wf real_wf nat_plus_wf req_weakening req_functionality rnexp_functionality rleq_antisymmetry rnexp-rleq-iff rleq_weakening req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule because_Cache natural_numberEquality independent_isectElimination productElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (x  =  y  \mLeftarrow{}{}\mRightarrow{}  x\^{}n  =  y\^{}n))



Date html generated: 2016_05_18-AM-07_19_42
Last ObjectModification: 2015_12_28-AM-00_46_32

Theory : reals


Home Index