Nuprl Lemma : rsqrt-rneq

x,y:{x:ℝr0 ≤ x} .  (rsqrt(x) ≠ rsqrt(y)  x ≠ y)


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rneq: x ≠ y rleq: x ≤ y int-to-real: r(n) real: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rneq: x ≠ y or: P ∨ Q member: t ∈ T prop: uall: [x:A]. B[x] guard: {T} subtype_rel: A ⊆B and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True nat: le: A ≤ B false: False not: ¬A uimplies: supposing a iff: ⇐⇒ Q
Lemmas referenced :  rless_wf rneq_wf rsqrt_wf rleq_wf int-to-real_wf real_wf req_wf rmul_wf set_wf rnexp-rless rsqrt_nonneg less_than_wf rless_functionality rnexp_wf false_wf le_wf rsqrt-rnexp-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin inlFormation cut introduction extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis sqequalRule inrFormation dependent_set_memberEquality natural_numberEquality applyEquality lambdaEquality setEquality productEquality because_Cache dependent_functionElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed independent_isectElimination productElimination

Latex:
\mforall{}x,y:\{x:\mBbbR{}|  r0  \mleq{}  x\}  .    (rsqrt(x)  \mneq{}  rsqrt(y)  {}\mRightarrow{}  x  \mneq{}  y)



Date html generated: 2017_10_03-AM-10_44_28
Last ObjectModification: 2017_06_21-PM-11_03_57

Theory : reals


Home Index