Nuprl Lemma : rsqrt_2-irrational
irrational(rsqrt(r(2)))
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
irrational: irrational(x)
, 
rsqrt: rsqrt(x)
, 
int-to-real: r(n)
, 
natural_number: $n
Definitions unfolded in proof : 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
int_seg_subtype, 
false_wf, 
int_seg_cases, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rsqrt-irrational, 
le_wf
Rules used in proof : 
unionElimination, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
sqequalRule, 
natural_numberEquality, 
dependent_set_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
productElimination, 
introduction, 
extract_by_obid, 
setElimination, 
rename, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll
Latex:
irrational(rsqrt(r(2)))
Date html generated:
2016_10_26-AM-11_11_43
Last ObjectModification:
2016_09_07-PM-11_56_02
Theory : reals
Home
Index