Nuprl Lemma : rsum-one
∀[n,m:ℤ].  (Σ{r1 | n≤k≤m} = if m <z n then r0 else r((m - n) + 1) fi )
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
int-to-real: r(n)
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsum_wf, 
int-to-real_wf, 
int_seg_wf, 
ifthenelse_wf, 
lt_int_wf, 
real_wf, 
subtract_wf, 
rmul_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
rmul-zero, 
eqff_to_assert, 
equal_wf, 
bool_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
rmul-identity1, 
req_functionality, 
rsum-constant2, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesis, 
addEquality, 
independent_functionElimination, 
intEquality, 
isect_memberEquality, 
because_Cache, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
voidElimination
Latex:
\mforall{}[n,m:\mBbbZ{}].    (\mSigma{}\{r1  |  n\mleq{}k\mleq{}m\}  =  if  m  <z  n  then  r0  else  r((m  -  n)  +  1)  fi  )
Date html generated:
2017_10_03-AM-08_59_53
Last ObjectModification:
2017_07_28-AM-07_39_15
Theory : reals
Home
Index