Nuprl Lemma : rsum-one

[n,m:ℤ].  {r1 n≤k≤m} if m <then r0 else r((m n) 1) fi )


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y int-to-real: r(n) ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] subtract: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rsum_wf int-to-real_wf int_seg_wf ifthenelse_wf lt_int_wf real_wf subtract_wf rmul_wf eqtt_to_assert assert_of_lt_int rmul-zero eqff_to_assert equal_wf bool_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot rmul-identity1 req_functionality rsum-constant2 req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality natural_numberEquality hypothesis addEquality independent_functionElimination intEquality isect_memberEquality because_Cache lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate voidElimination

Latex:
\mforall{}[n,m:\mBbbZ{}].    (\mSigma{}\{r1  |  n\mleq{}k\mleq{}m\}  =  if  m  <z  n  then  r0  else  r((m  -  n)  +  1)  fi  )



Date html generated: 2017_10_03-AM-08_59_53
Last ObjectModification: 2017_07_28-AM-07_39_15

Theory : reals


Home Index