Nuprl Lemma : rsum-rminus

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  {-(x[k]) n≤k≤m} -(Σ{x[k] n≤k≤m}))


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y rminus: -(x) real: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top req_int_terms: t1 ≡ t2
Lemmas referenced :  rsum_linearity2 int-to-real_wf int_seg_wf real_wf req_functionality rsum_wf rmul_wf rminus_wf rsum_functionality2 le_wf decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf itermSubtract_wf itermMultiply_wf itermMinus_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma real_term_value_minus_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality minusEquality natural_numberEquality functionEquality addEquality intEquality sqequalRule lambdaEquality applyEquality functionExtensionality independent_isectElimination lambdaFormation productElimination because_Cache dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    (\mSigma{}\{-(x[k])  |  n\mleq{}k\mleq{}m\}  =  -(\mSigma{}\{x[k]  |  n\mleq{}k\mleq{}m\}))



Date html generated: 2018_05_22-PM-01_51_56
Last ObjectModification: 2017_10_23-PM-11_53_08

Theory : reals


Home Index