Step
*
1
1
2
of Lemma
rv-T-partially-implies-rv-T'
1. n : ℕ+
2. x : ℝ^n
3. y : ℝ^n
4. t1 : ℝ
5. r0 < t1
6. t1 < r1
7. x ≠ y
8. t2 : ℝ
9. r0 < t2
10. t2 < r1
11. x ≠ y
12. t : ℝ
13. r0 ≤ t
14. t ≤ r1
15. r0 < ((t * t1) + ((r1 - t) * t2))
⊢ ((t * t1) + ((r1 - t) * t2)) < r1
BY
{ Assert ⌜((t * t1) + ((r1 - t) * t2)) ≤ rmax(t1;t2)⌝⋅ }
1
.....assertion.....
1. n : ℕ+
2. x : ℝ^n
3. y : ℝ^n
4. t1 : ℝ
5. r0 < t1
6. t1 < r1
7. x ≠ y
8. t2 : ℝ
9. r0 < t2
10. t2 < r1
11. x ≠ y
12. t : ℝ
13. r0 ≤ t
14. t ≤ r1
15. r0 < ((t * t1) + ((r1 - t) * t2))
⊢ ((t * t1) + ((r1 - t) * t2)) ≤ rmax(t1;t2)
2
1. n : ℕ+
2. x : ℝ^n
3. y : ℝ^n
4. t1 : ℝ
5. r0 < t1
6. t1 < r1
7. x ≠ y
8. t2 : ℝ
9. r0 < t2
10. t2 < r1
11. x ≠ y
12. t : ℝ
13. r0 ≤ t
14. t ≤ r1
15. r0 < ((t * t1) + ((r1 - t) * t2))
16. ((t * t1) + ((r1 - t) * t2)) ≤ rmax(t1;t2)
⊢ ((t * t1) + ((r1 - t) * t2)) < r1
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. x : \mBbbR{}\^{}n
3. y : \mBbbR{}\^{}n
4. t1 : \mBbbR{}
5. r0 < t1
6. t1 < r1
7. x \mneq{} y
8. t2 : \mBbbR{}
9. r0 < t2
10. t2 < r1
11. x \mneq{} y
12. t : \mBbbR{}
13. r0 \mleq{} t
14. t \mleq{} r1
15. r0 < ((t * t1) + ((r1 - t) * t2))
\mvdash{} ((t * t1) + ((r1 - t) * t2)) < r1
By
Latex:
Assert \mkleeneopen{}((t * t1) + ((r1 - t) * t2)) \mleq{} rmax(t1;t2)\mkleeneclose{}\mcdot{}
Home
Index