Nuprl Lemma : rv-T-partially-implies-rv-T'

n:ℕ+. ∀a,b,c:ℝ^n.  ((a ≠ c ∨ a ≠ c))  rv-T(n;a;b;c)  rv-T'(n;a;b;c))


Proof




Definitions occuring in Statement :  rv-T': rv-T'(n;a;b;c) rv-T: rv-T(n;a;b;c) real-vec-sep: a ≠ b real-vec: ^n nat_plus: + all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rv-T': rv-T'(n;a;b;c) or: P ∨ Q rv-T: rv-T(n;a;b;c) and: P ∧ Q real-vec-be: real-vec-be(n;a;b;c) exists: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] subtype_rel: A ⊆B uiff: uiff(P;Q) uimplies: supposing a prop: rv-between: a-b-c real-vec-between: a-b-c iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B rsub: y rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B real: real-vec-mul: a*X real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n nat_plus: +
Lemmas referenced :  member_rccint_lemma not-real-vec-sep-iff-eq nat_plus_subtype_nat rv-between_wf rv-T_wf or_wf real-vec-sep_wf not_wf real-vec_wf nat_plus_wf real-vec-add_wf real-vec-mul_wf rsub_wf int-to-real_wf rv-between_functionality req-vec_weakening real-vec-add_functionality real-vec-mul_functionality req_weakening radd_wf rmul_wf i-member_wf rooint_wf req-vec_wf member_rooint_lemma rless-cases radd-zero-both radd-rminus-both radd_functionality radd-ac radd_comm rleq_functionality uiff_transitivity rmul-zero-both rless_functionality rminus_wf rleq_wf radd-preserves-rleq rmul_preserves_rless rmul_functionality_wrt_rleq2 radd_functionality_wrt_rleq rless_functionality_wrt_implies rless_wf rleq_weakening_rless rleq_weakening_equal rless_transitivity2 radd-preserves-rless rmul-nonneg-case1 equal_wf real_wf rmul_comm real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 rleq-rmax rmul_preserves_rleq2 rmax_wf less_than'_wf itermMultiply_wf real_term_value_mul_lemma rleq_functionality_wrt_implies req_inversion rmul-distrib1 req_wf rleq_weakening rmul_functionality rmax_strict_lb int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution unionElimination thin productElimination independent_functionElimination hypothesis cut introduction extract_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality isectElimination hypothesisEquality applyEquality sqequalRule independent_isectElimination because_Cache natural_numberEquality independent_pairFormation dependent_pairFormation productEquality levelHypothesis addLevel equalitySymmetry equalityTransitivity inlFormation promote_hyp computeAll lambdaEquality int_eqEquality intEquality isect_memberFormation independent_pairEquality setElimination rename minusEquality axiomEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    ((a  \mneq{}  c  \mvee{}  (\mneg{}a  \mneq{}  c))  {}\mRightarrow{}  rv-T(n;a;b;c)  {}\mRightarrow{}  rv-T'(n;a;b;c))



Date html generated: 2017_10_03-AM-11_25_42
Last ObjectModification: 2017_07_28-AM-08_27_07

Theory : reals


Home Index