Nuprl Lemma : rv-congruent-implies-eq

n:ℕ. ∀a,b,c:ℝ^n.  (aa=bc  req-vec(n;b;c))


Proof




Definitions occuring in Statement :  rv-congruent: ab=cd req-vec: req-vec(n;x;y) real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  rv-congruent: ab=cd all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T prop: subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T}
Lemmas referenced :  real-vec-dist-same-zero req_wf real-vec-dist_wf real_wf rleq_wf int-to-real_wf real-vec_wf nat_wf real-vec-dist-identity req_inversion req_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality because_Cache productElimination independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (aa=bc  {}\mRightarrow{}  req-vec(n;b;c))



Date html generated: 2017_10_03-AM-11_04_08
Last ObjectModification: 2017_08_11-PM-06_33_15

Theory : reals


Home Index