Nuprl Lemma : rv-congruent-implies-eq
∀n:ℕ. ∀a,b,c:ℝ^n.  (aa=bc 
⇒ req-vec(n;b;c))
Proof
Definitions occuring in Statement : 
rv-congruent: ab=cd
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
rv-congruent: ab=cd
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
real-vec-dist-same-zero, 
req_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
real-vec_wf, 
nat_wf, 
real-vec-dist-identity, 
req_inversion, 
req_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
because_Cache, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (aa=bc  {}\mRightarrow{}  req-vec(n;b;c))
Date html generated:
2017_10_03-AM-11_04_08
Last ObjectModification:
2017_08_11-PM-06_33_15
Theory : reals
Home
Index