Step
*
1
1
1
2
of Lemma
series-diverges-tail
1. x : ℕ ⟶ ℝ
2. N : ℕ
3. e : ℝ
4. r0 < e
5. ∀k:ℕ. ∃m,n:ℕ. ((k ≤ m) ∧ (k ≤ n) ∧ (e ≤ |Σ{x[N + i] | 0≤i≤m} - Σ{x[N + i] | 0≤i≤n}|))
6. k : ℕ
7. m : ℕ
8. n : ℕ
9. k ≤ m
10. k ≤ n
11. e ≤ |Σ{x[N + i] | 0≤i≤m} - Σ{x[N + i] | 0≤i≤n}|
12. k ≤ (N + m)
13. k ≤ (N + n)
14. ∀[n,m:ℤ]. ∀[x:Top]. (Σ{x[i] | n≤i≤m} ~ Σ{x[i + N] | n - N≤i≤m - N})
15. ¬(n ≤ m)
⊢ e ≤ |Σ{x[i + N] | 0 - N≤i≤m} - Σ{x[i + N] | 0 - N≤i≤n}|
BY
{ ((RWO "rabs-difference-symmetry" (-5) THENA Auto) THEN (RWO "rabs-difference-symmetry" 0 THENA Auto)) }
1
1. x : ℕ ⟶ ℝ
2. N : ℕ
3. e : ℝ
4. r0 < e
5. ∀k:ℕ. ∃m,n:ℕ. ((k ≤ m) ∧ (k ≤ n) ∧ (e ≤ |Σ{x[N + i] | 0≤i≤m} - Σ{x[N + i] | 0≤i≤n}|))
6. k : ℕ
7. m : ℕ
8. n : ℕ
9. k ≤ m
10. k ≤ n
11. e ≤ |Σ{x[N + i] | 0≤i≤n} - Σ{x[N + i] | 0≤i≤m}|
12. k ≤ (N + m)
13. k ≤ (N + n)
14. ∀[n,m:ℤ]. ∀[x:Top]. (Σ{x[i] | n≤i≤m} ~ Σ{x[i + N] | n - N≤i≤m - N})
15. ¬(n ≤ m)
⊢ e ≤ |Σ{x[i + N] | 0 - N≤i≤n} - Σ{x[i + N] | 0 - N≤i≤m}|
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. N : \mBbbN{}
3. e : \mBbbR{}
4. r0 < e
5. \mforall{}k:\mBbbN{}. \mexists{}m,n:\mBbbN{}. ((k \mleq{} m) \mwedge{} (k \mleq{} n) \mwedge{} (e \mleq{} |\mSigma{}\{x[N + i] | 0\mleq{}i\mleq{}m\} - \mSigma{}\{x[N + i] | 0\mleq{}i\mleq{}n\}|))
6. k : \mBbbN{}
7. m : \mBbbN{}
8. n : \mBbbN{}
9. k \mleq{} m
10. k \mleq{} n
11. e \mleq{} |\mSigma{}\{x[N + i] | 0\mleq{}i\mleq{}m\} - \mSigma{}\{x[N + i] | 0\mleq{}i\mleq{}n\}|
12. k \mleq{} (N + m)
13. k \mleq{} (N + n)
14. \mforall{}[n,m:\mBbbZ{}]. \mforall{}[x:Top]. (\mSigma{}\{x[i] | n\mleq{}i\mleq{}m\} \msim{} \mSigma{}\{x[i + N] | n - N\mleq{}i\mleq{}m - N\})
15. \mneg{}(n \mleq{} m)
\mvdash{} e \mleq{} |\mSigma{}\{x[i + N] | 0 - N\mleq{}i\mleq{}m\} - \mSigma{}\{x[i + N] | 0 - N\mleq{}i\mleq{}n\}|
By
Latex:
((RWO "rabs-difference-symmetry" (-5) THENA Auto)
THEN (RWO "rabs-difference-symmetry" 0 THENA Auto)
)
Home
Index