Nuprl Lemma : series-diverges_functionality

[x,y:ℕ ⟶ ℝ].  n.x[n]↑  Σn.y[n]↑supposing ∀n:ℕ(x[n] y[n])


Proof




Definitions occuring in Statement :  series-diverges: Σn.x[n]↑ req: y real: nat: uimplies: supposing a uall: [x:A]. B[x] guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uiff: uiff(P;Q) not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat: cand: c∧ B prop: and: P ∧ Q exists: x:A. B[x] diverges: n.x[n]↑ series-diverges: Σn.x[n]↑ guard: {T} implies:  Q so_apply: x[s] all: x:A. B[x] member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  rsum_functionality2 rsub_functionality rabs_functionality req_weakening rleq_functionality real_wf req_wf series-diverges_wf all_wf int-to-real_wf rless_wf exists_wf int_seg_wf false_wf int_seg_subtype_nat rsum_wf rsub_wf rabs_wf rleq_wf le_wf nat_wf req_witness
Rules used in proof :  intEquality dependent_set_memberEquality functionEquality independent_isectElimination addEquality natural_numberEquality because_Cache setElimination productEquality promote_hyp independent_pairFormation dependent_pairFormation productElimination lambdaFormation rename independent_functionElimination hypothesis functionExtensionality applyEquality isectElimination extract_by_obid hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].    \{\mSigma{}n.x[n]\muparrow{}  {}\mRightarrow{}  \mSigma{}n.y[n]\muparrow{}\}  supposing  \mforall{}n:\mBbbN{}.  (x[n]  =  y[n])



Date html generated: 2016_11_08-AM-09_00_41
Last ObjectModification: 2016_11_07-PM-00_01_23

Theory : reals


Home Index