Nuprl Lemma : series-diverges_functionality
∀[x,y:ℕ ⟶ ℝ].  {Σn.x[n]↑ 
⇒ Σn.y[n]↑} supposing ∀n:ℕ. (x[n] = y[n])
Proof
Definitions occuring in Statement : 
series-diverges: Σn.x[n]↑
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
cand: A c∧ B
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
diverges: n.x[n]↑
, 
series-diverges: Σn.x[n]↑
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rsum_functionality2, 
rsub_functionality, 
rabs_functionality, 
req_weakening, 
rleq_functionality, 
real_wf, 
req_wf, 
series-diverges_wf, 
all_wf, 
int-to-real_wf, 
rless_wf, 
exists_wf, 
int_seg_wf, 
false_wf, 
int_seg_subtype_nat, 
rsum_wf, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
le_wf, 
nat_wf, 
req_witness
Rules used in proof : 
intEquality, 
dependent_set_memberEquality, 
functionEquality, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
because_Cache, 
setElimination, 
productEquality, 
promote_hyp, 
independent_pairFormation, 
dependent_pairFormation, 
productElimination, 
lambdaFormation, 
rename, 
independent_functionElimination, 
hypothesis, 
functionExtensionality, 
applyEquality, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].    \{\mSigma{}n.x[n]\muparrow{}  {}\mRightarrow{}  \mSigma{}n.y[n]\muparrow{}\}  supposing  \mforall{}n:\mBbbN{}.  (x[n]  =  y[n])
Date html generated:
2016_11_08-AM-09_00_41
Last ObjectModification:
2016_11_07-PM-00_01_23
Theory : reals
Home
Index