Nuprl Lemma : series-sum-linear1

x,y:ℕ ⟶ ℝ. ∀a,b:ℝ.  n.x[n]  Σn.y[n]  Σn.x[n] y[n] b)


Proof




Definitions occuring in Statement :  series-sum: Σn.x[n] a radd: b real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  series-sum: Σn.x[n] a all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] nat: so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  radd-limit rsum_wf int_seg_wf nat_wf converges-to_wf int_seg_subtype_nat false_wf real_wf radd_wf req_weakening converges-to_functionality req_functionality rsum_linearity1
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin lambdaEquality isectElimination natural_numberEquality setElimination rename hypothesisEquality applyEquality because_Cache hypothesis addEquality independent_functionElimination independent_isectElimination independent_pairFormation functionEquality productElimination

Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,b:\mBbbR{}.    (\mSigma{}n.x[n]  =  a  {}\mRightarrow{}  \mSigma{}n.y[n]  =  b  {}\mRightarrow{}  \mSigma{}n.x[n]  +  y[n]  =  a  +  b)



Date html generated: 2016_05_18-AM-07_56_57
Last ObjectModification: 2015_12_28-AM-01_08_33

Theory : reals


Home Index