Nuprl Lemma : radd-limit

x,y:ℕ ⟶ ℝ. ∀a,b:ℝ.  (lim n→∞.x[n]  lim n→∞.y[n]  lim n→∞.x[n] y[n] b)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y radd: b real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T uall: [x:A]. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: sq_exists: x:{A| B[x]} nat: guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rsub: y
Lemmas referenced :  mul_nat_plus less_than_wf imax_wf imax_nat nat_wf nat_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf imax_lb all_wf rleq_wf rabs_wf rsub_wf radd_wf rdiv_wf int-to-real_wf rless-int decidable__lt intformless_wf int_formula_prop_less_lemma rless_wf nat_plus_wf converges-to_wf real_wf rleq_functionality_wrt_implies rleq_weakening_equal r-triangle-inequality rmul_wf rminus_wf uiff_transitivity rleq_functionality rabs_functionality radd_functionality rminus-radd req_weakening req_inversion radd-assoc radd_comm radd-ac rminus-as-rmul itermMultiply_wf int_term_value_mul_lemma rleq-int-fractions itermAdd_wf int_term_value_add_lemma radd_functionality_wrt_rleq req_transitivity radd-rdiv rdiv_functionality radd-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin introduction extract_by_obid isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality hypothesisEquality baseClosed setElimination rename dependent_set_memberFormation equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination because_Cache productElimination functionEquality applyEquality functionExtensionality inrFormation minusEquality multiplyEquality addEquality

Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,b:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  b  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  +  y[n]  =  a  +  b)



Date html generated: 2017_10_03-AM-09_04_53
Last ObjectModification: 2017_07_28-AM-07_41_12

Theory : reals


Home Index