Nuprl Lemma : simple-glueing

[X:Type]. ∀[dX:metric(X)]. ∀[A,B:X ⟶ ℙ].
  ((∀x1,x2:X.  (x1 ≡ x2  A[x1]  A[x2]))
   (∀x1,x2:X.  (x1 ≡ x2  B[x1]  B[x2]))
   (∀x:X. (A[x] ∨ B[x]))
   (∀[Y:Type]. ∀[dY:metric(Y)].
        ∀f:FUN({x:X| A[x]}  ⟶ Y). ∀g:FUN({x:X| B[x]}  ⟶ Y).
          ∃h:FUN(X ⟶ Y). ∀x:X. ((A[x]  x ≡ x) ∧ (B[x]  x ≡ x)) 
          supposing ∀x:X. ((A[x] ∧ B[x])  x ≡ x)))


Proof




Definitions occuring in Statement :  mfun: FUN(X ⟶ Y) meq: x ≡ y metric: metric(X) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T meq: x ≡ y metric: metric(X) mfun: FUN(X ⟶ Y) and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B prop: exists: x:A. B[x] or: P ∨ Q is-mfun: f:FUN(X;Y) guard: {T} cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness subtype_rel_self int-to-real_wf meq_wf mfun_wf metric-on-subtype metric_wf istype-universe is-mfun_wf meq_functionality meq_weakening meq_inversion meq-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality setElimination rename hypothesis dependent_set_memberEquality_alt productElimination universeIsType instantiate universeEquality because_Cache natural_numberEquality independent_functionElimination functionIsTypeImplies inhabitedIsType dependent_pairFormation_alt functionIsType productIsType setEquality independent_isectElimination setIsType unionIsType functionExtensionality unionElimination equalityIstype equalityTransitivity equalitySymmetry independent_pairFormation

Latex:
\mforall{}[X:Type].  \mforall{}[dX:metric(X)].  \mforall{}[A,B:X  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x1,x2:X.    (x1  \mequiv{}  x2  {}\mRightarrow{}  A[x1]  {}\mRightarrow{}  A[x2]))
    {}\mRightarrow{}  (\mforall{}x1,x2:X.    (x1  \mequiv{}  x2  {}\mRightarrow{}  B[x1]  {}\mRightarrow{}  B[x2]))
    {}\mRightarrow{}  (\mforall{}x:X.  (A[x]  \mvee{}  B[x]))
    {}\mRightarrow{}  (\mforall{}[Y:Type].  \mforall{}[dY:metric(Y)].
                \mforall{}f:FUN(\{x:X|  A[x]\}    {}\mrightarrow{}  Y).  \mforall{}g:FUN(\{x:X|  B[x]\}    {}\mrightarrow{}  Y).
                    \mexists{}h:FUN(X  {}\mrightarrow{}  Y).  \mforall{}x:X.  ((A[x]  {}\mRightarrow{}  h  x  \mequiv{}  f  x)  \mwedge{}  (B[x]  {}\mRightarrow{}  h  x  \mequiv{}  g  x)) 
                    supposing  \mforall{}x:X.  ((A[x]  \mwedge{}  B[x])  {}\mRightarrow{}  f  x  \mequiv{}  g  x)))



Date html generated: 2019_10_30-AM-06_22_34
Last ObjectModification: 2019_10_02-AM-09_58_19

Theory : reals


Home Index