Step
*
1
1
1
1
1
1
of Lemma
small-reciprocal-real
1. x : {x:ℝ| r0 < x}
2. n : ℕ+
3. 4 < x n
4. ((r(x n))/2 * n - (r1/r(n))) ≤ x
⊢ (r((1 * n) + (1 * (n + 1)))/r((n + 1) * n)) < (r(x n))/2 * n
BY
{ ((RWO "int-rdiv-req" 0 THENA Auto) THEN BLemma `rless-int-fractions` THEN Auto) }
1
1. x : {x:ℝ| r0 < x}
2. n : ℕ+
3. 4 < x n
4. ((r(x n))/2 * n - (r1/r(n))) ≤ x
⊢ ((1 * n) + (1 * (n + 1))) * 2 * n < (x n) * (n + 1) * n
Latex:
Latex:
1. x : \{x:\mBbbR{}| r0 < x\}
2. n : \mBbbN{}\msupplus{}
3. 4 < x n
4. ((r(x n))/2 * n - (r1/r(n))) \mleq{} x
\mvdash{} (r((1 * n) + (1 * (n + 1)))/r((n + 1) * n)) < (r(x n))/2 * n
By
Latex:
((RWO "int-rdiv-req" 0 THENA Auto) THEN BLemma `rless-int-fractions` THEN Auto)
Home
Index