Step
*
2
1
2
1
of Lemma
sup-iff-closure
.....rewrite subgoal..... 
1. A : Set(ℝ)
2. x : ℝ
3. A ≤ x
4. z : ℕ ⟶ ℝ
5. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n) 
⇒ (|z[n] - x| ≤ (r1/r(k)))))])
6. ∀n:ℕ. (A z[n])
7. e : ℝ
8. r0 < e
9. k : ℕ+
10. (r1/r(k)) < e
11. N : ℕ
12. ∀n:ℕ. ((N ≤ n) 
⇒ (|z[n] - x| ≤ (r1/r(k))))
13. |x - z[N]| ≤ (r1/r(k))
14. z[N] ∈ A
⊢ r0 ≤ (x - z[N])
BY
{ nRAdd ⌜z[N]⌝ 0⋅ }
1
1. A : Set(ℝ)
2. x : ℝ
3. A ≤ x
4. z : ℕ ⟶ ℝ
5. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n) 
⇒ (|z[n] - x| ≤ (r1/r(k)))))])
6. ∀n:ℕ. (A z[n])
7. e : ℝ
8. r0 < e
9. k : ℕ+
10. (r1/r(k)) < e
11. N : ℕ
12. ∀n:ℕ. ((N ≤ n) 
⇒ (|z[n] - x| ≤ (r1/r(k))))
13. |x - z[N]| ≤ (r1/r(k))
14. z[N] ∈ A
⊢ z[N] ≤ x
Latex:
Latex:
.....rewrite  subgoal..... 
1.  A  :  Set(\mBbbR{})
2.  x  :  \mBbbR{}
3.  A  \mleq{}  x
4.  z  :  \mBbbN{}  {}\mrightarrow{}  \mBbbR{}
5.  \mforall{}k:\mBbbN{}\msupplus{}.  (\mexists{}N:\mBbbN{}  [(\mforall{}n:\mBbbN{}.  ((N  \mleq{}  n)  {}\mRightarrow{}  (|z[n]  -  x|  \mleq{}  (r1/r(k)))))])
6.  \mforall{}n:\mBbbN{}.  (A  z[n])
7.  e  :  \mBbbR{}
8.  r0  <  e
9.  k  :  \mBbbN{}\msupplus{}
10.  (r1/r(k))  <  e
11.  N  :  \mBbbN{}
12.  \mforall{}n:\mBbbN{}.  ((N  \mleq{}  n)  {}\mRightarrow{}  (|z[n]  -  x|  \mleq{}  (r1/r(k))))
13.  |x  -  z[N]|  \mleq{}  (r1/r(k))
14.  z[N]  \mmember{}  A
\mvdash{}  r0  \mleq{}  (x  -  z[N])
By
Latex:
nRAdd  \mkleeneopen{}z[N]\mkleeneclose{}  0\mcdot{}
Home
Index