Nuprl Lemma : trivial-rsub-rless

a,d:ℝ.  uiff((a d) < a;r0 < d)


Proof




Definitions occuring in Statement :  rless: x < y rsub: y int-to-real: r(n) real: uiff: uiff(P;Q) all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  rless-implies-rless int-to-real_wf rsub_wf real_term_polynomial itermSubtract_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 rless_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis hypothesisEquality independent_isectElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination

Latex:
\mforall{}a,d:\mBbbR{}.    uiff((a  -  d)  <  a;r0  <  d)



Date html generated: 2017_10_03-AM-08_25_55
Last ObjectModification: 2017_07_28-AM-07_24_02

Theory : reals


Home Index