Nuprl Lemma : arccos-unique
∀[x:{x:ℝ| x ∈ [r(-1), r1]} ]. ∀[y:{y:ℝ| y ∈ [r0, π]} ].  ((rcos(y) = x) ⇒ (arccos(x) = y))
Proof
Definitions occuring in Statement : 
arccos: arccos(x), 
pi: π, 
rcos: rcos(x), 
rccint: [l, u], 
i-member: r ∈ I, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
top: Top, 
uimplies: b supposing a, 
not: ¬A, 
rneq: x ≠ y, 
or: P ∨ Q, 
strictly-decreasing-on-interval: f[x] strictly-decreasing for x ∈ I, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
so_apply: x[s], 
cand: A c∧ B, 
guard: {T}, 
false: False
Lemmas referenced : 
rcos-arccos, 
req_wf, 
rcos_wf, 
req_witness, 
arccos_wf, 
member_rccint_lemma, 
istype-void, 
real_wf, 
i-member_wf, 
rccint_wf, 
int-to-real_wf, 
pi_wf, 
rcos-strictly-decreasing, 
not-rneq, 
rneq_wf, 
subtype_rel_sets_simple, 
req_inversion, 
rless_transitivity1, 
rleq_weakening, 
rless_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
universeIsType, 
setElimination, 
rename, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
isect_memberEquality_alt, 
voidElimination, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_functionElimination, 
functionIsTypeImplies, 
setIsType, 
natural_numberEquality, 
isectIsTypeImplies, 
minusEquality, 
independent_isectElimination, 
unionElimination, 
productEquality, 
productElimination, 
productIsType
Latex:
\mforall{}[x:\{x:\mBbbR{}|  x  \mmember{}  [r(-1),  r1]\}  ].  \mforall{}[y:\{y:\mBbbR{}|  y  \mmember{}  [r0,  \mpi{}]\}  ].    ((rcos(y)  =  x)  {}\mRightarrow{}  (arccos(x)  =  y))
Date html generated:
2019_10_31-AM-06_16_27
Last ObjectModification:
2019_05_23-AM-11_40_38
Theory : reals_2
Home
Index