Step * 1 1 of Lemma integral-from-Taylor

.....wf..... 
1. : ℝ
2. {t:ℝr0 < t} 
3. : ℕ ⟶ (a t, t) ⟶ℝ
4. ∀k:ℕ. ∀x,y:{x:ℝx ∈ (a t, t)} .  ((x y)  (F[k;x] F[k;y]))
5. infinite-deriv-seq((a t, t);i,x.F[i;x])
6. ∀r:{r:ℝ(r0 ≤ r) ∧ (r < t)} lim k→∞.r^k (F[k 1;x]/r((k)!)) = λx.r0 for x ∈ (a t, t)
7. {b:ℝb ∈ (a t, t)} 
8. lim n→∞.b_∫-x Σ{(F[i;a]/r((i)!)) a^i 0≤i≤n} dt = λx.b_∫-F[0;t] dt for x ∈ (a t, t)
9. : ℕ
10. {x:ℝx ∈ (a t, t)} 
11. [rmin(b;x), rmax(b;x)] ⊆ (a t, t) 
⊢ λi,t. ((F[i;a]/r((i)!)) a^i) ∈ {f:ℕ1 ⟶ [rmin(b;x), rmax(b;x)] ⟶ℝ
                                    ∀i:ℕ1. ifun(λx.f[i;x];[rmin(b;x), rmax(b;x)])} 
BY
(MemTypeCD THEN Auto) }

1
1. : ℝ
2. {t:ℝr0 < t} 
3. : ℕ ⟶ (a t, t) ⟶ℝ
4. ∀k:ℕ. ∀x,y:{x:ℝx ∈ (a t, t)} .  ((x y)  (F[k;x] F[k;y]))
5. infinite-deriv-seq((a t, t);i,x.F[i;x])
6. ∀r:{r:ℝ(r0 ≤ r) ∧ (r < t)} lim k→∞.r^k (F[k 1;x]/r((k)!)) = λx.r0 for x ∈ (a t, t)
7. {b:ℝb ∈ (a t, t)} 
8. lim n→∞.b_∫-x Σ{(F[i;a]/r((i)!)) a^i 0≤i≤n} dt = λx.b_∫-F[0;t] dt for x ∈ (a t, t)
9. : ℕ
10. {x:ℝx ∈ (a t, t)} 
11. [rmin(b;x), rmax(b;x)] ⊆ (a t, t) 
12. : ℕ1
⊢ ifun(λx.λi,t. ((F[i;a]/r((i)!)) a^i)[i;x];[rmin(b;x), rmax(b;x)])


Latex:


Latex:
.....wf..... 
1.  a  :  \mBbbR{}
2.  t  :  \{t:\mBbbR{}|  r0  <  t\} 
3.  F  :  \mBbbN{}  {}\mrightarrow{}  (a  -  t,  a  +  t)  {}\mrightarrow{}\mBbbR{}
4.  \mforall{}k:\mBbbN{}.  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  (a  -  t,  a  +  t)\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y]))
5.  infinite-deriv-seq((a  -  t,  a  +  t);i,x.F[i;x])
6.  \mforall{}r:\{r:\mBbbR{}|  (r0  \mleq{}  r)  \mwedge{}  (r  <  t)\}  .  lim  k\mrightarrow{}\minfty{}.r\^{}k  *  (F[k  +  1;x]/r((k)!))  =  \mlambda{}x.r0  for  x  \mmember{}  (a  -  t,  a  +  t)
7.  b  :  \{b:\mBbbR{}|  b  \mmember{}  (a  -  t,  a  +  t)\} 
8.  lim  n\mrightarrow{}\minfty{}.b\_\mint{}\msupminus{}x  \mSigma{}\{(F[i;a]/r((i)!))  *  t  -  a\^{}i  |  0\mleq{}i\mleq{}n\}  dt  =  \mlambda{}x.b\_\mint{}\msupminus{}x  F[0;t]  dt  for  x  \mmember{}  (a  -  t,  a
+  t)
9.  n  :  \mBbbN{}
10.  x  :  \{x:\mBbbR{}|  x  \mmember{}  (a  -  t,  a  +  t)\} 
11.  [rmin(b;x),  rmax(b;x)]  \msubseteq{}  (a  -  t,  a  +  t) 
\mvdash{}  \mlambda{}i,t.  ((F[i;a]/r((i)!))  *  t  -  a\^{}i)  \mmember{}  \{f:\mBbbN{}n  +  1  {}\mrightarrow{}  [rmin(b;x),  rmax(b;x)]  {}\mrightarrow{}\mBbbR{}| 
                                                                        \mforall{}i:\mBbbN{}n  +  1.  ifun(\mlambda{}x.f[i;x];[rmin(b;x),  rmax(b;x)])\} 


By


Latex:
(MemTypeCD  THEN  Auto)




Home Index