Step
*
1
1
1
of Lemma
integral-from-Taylor
1. a : ℝ
2. t : {t:ℝ| r0 < t} 
3. F : ℕ ⟶ (a - t, a + t) ⟶ℝ
4. ∀k:ℕ. ∀x,y:{x:ℝ| x ∈ (a - t, a + t)} .  ((x = y) 
⇒ (F[k;x] = F[k;y]))
5. infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
6. ∀r:{r:ℝ| (r0 ≤ r) ∧ (r < t)} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (a - t, a + t)
7. b : {b:ℝ| b ∈ (a - t, a + t)} 
8. lim n→∞.b_∫-x Σ{(F[i;a]/r((i)!)) * t - a^i | 0≤i≤n} dt = λx.b_∫-x F[0;t] dt for x ∈ (a - t, a + t)
9. n : ℕ
10. x : {x:ℝ| x ∈ (a - t, a + t)} 
11. [rmin(b;x), rmax(b;x)] ⊆ (a - t, a + t) 
12. i : ℕn + 1
⊢ ifun(λx.λi,t. ((F[i;a]/r((i)!)) * t - a^i)[i;x];[rmin(b;x), rmax(b;x)])
BY
{ ((RepUR ``so_apply`` 0 THEN D 0 THEN Auto) THEN Reduce 0) }
1
1. a : ℝ
2. t : {t:ℝ| r0 < t} 
3. F : ℕ ⟶ (a - t, a + t) ⟶ℝ
4. ∀k:ℕ. ∀x,y:{x:ℝ| x ∈ (a - t, a + t)} .  ((x = y) 
⇒ (F[k;x] = F[k;y]))
5. infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
6. ∀r:{r:ℝ| (r0 ≤ r) ∧ (r < t)} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (a - t, a + t)
7. b : {b:ℝ| b ∈ (a - t, a + t)} 
8. lim n→∞.b_∫-x Σ{(F[i;a]/r((i)!)) * t - a^i | 0≤i≤n} dt = λx.b_∫-x F[0;t] dt for x ∈ (a - t, a + t)
9. n : ℕ
10. x : {x:ℝ| x ∈ (a - t, a + t)} 
11. [rmin(b;x), rmax(b;x)] ⊆ (a - t, a + t) 
12. i : ℕn + 1
13. x@0 : {x@0:ℝ| x@0 ∈ [left-endpoint([rmin(b;x), rmax(b;x)]), right-endpoint([rmin(b;x), rmax(b;x)])]} 
14. y : {x@0:ℝ| x@0 ∈ [left-endpoint([rmin(b;x), rmax(b;x)]), right-endpoint([rmin(b;x), rmax(b;x)])]} 
15. x@0 = y
⊢ ((F i a/r((i)!)) * x@0 - a^i) = ((F i a/r((i)!)) * y - a^i)
Latex:
Latex:
1.  a  :  \mBbbR{}
2.  t  :  \{t:\mBbbR{}|  r0  <  t\} 
3.  F  :  \mBbbN{}  {}\mrightarrow{}  (a  -  t,  a  +  t)  {}\mrightarrow{}\mBbbR{}
4.  \mforall{}k:\mBbbN{}.  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  (a  -  t,  a  +  t)\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y]))
5.  infinite-deriv-seq((a  -  t,  a  +  t);i,x.F[i;x])
6.  \mforall{}r:\{r:\mBbbR{}|  (r0  \mleq{}  r)  \mwedge{}  (r  <  t)\}  .  lim  k\mrightarrow{}\minfty{}.r\^{}k  *  (F[k  +  1;x]/r((k)!))  =  \mlambda{}x.r0  for  x  \mmember{}  (a  -  t,  a  +  t)
7.  b  :  \{b:\mBbbR{}|  b  \mmember{}  (a  -  t,  a  +  t)\} 
8.  lim  n\mrightarrow{}\minfty{}.b\_\mint{}\msupminus{}x  \mSigma{}\{(F[i;a]/r((i)!))  *  t  -  a\^{}i  |  0\mleq{}i\mleq{}n\}  dt  =  \mlambda{}x.b\_\mint{}\msupminus{}x  F[0;t]  dt  for  x  \mmember{}  (a  -  t,  a
+  t)
9.  n  :  \mBbbN{}
10.  x  :  \{x:\mBbbR{}|  x  \mmember{}  (a  -  t,  a  +  t)\} 
11.  [rmin(b;x),  rmax(b;x)]  \msubseteq{}  (a  -  t,  a  +  t) 
12.  i  :  \mBbbN{}n  +  1
\mvdash{}  ifun(\mlambda{}x.\mlambda{}i,t.  ((F[i;a]/r((i)!))  *  t  -  a\^{}i)[i;x];[rmin(b;x),  rmax(b;x)])
By
Latex:
((RepUR  ``so\_apply``  0  THEN  D  0  THEN  Auto)  THEN  Reduce  0)
Home
Index