Nuprl Lemma : integral-from-Taylor

a:ℝ. ∀t:{t:ℝr0 < t} . ∀F:ℕ ⟶ (a t, t) ⟶ℝ.
  ((∀k:ℕ. ∀x,y:{x:ℝx ∈ (a t, t)} .  ((x y)  (F[k;x] F[k;y])))
   infinite-deriv-seq((a t, t);i,x.F[i;x])
   (∀r:{r:ℝ(r0 ≤ r) ∧ (r < t)} lim k→∞.r^k (F[k 1;x]/r((k)!)) = λx.r0 for x ∈ (a t, t))
   (∀b:{b:ℝb ∈ (a t, t)} 
        lim n→∞{(F[i;a]/r((i)!)) (x a^i a^i 1/r(i 1)) 0≤i≤n} = λx.b_∫-F[0;t] dt for x ∈ (a 
        t, t)))


Proof




Definitions occuring in Statement :  integral: a_∫-f[x] dx infinite-deriv-seq: infinite-deriv-seq(I;i,x.F[i; x]) fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I rfun: I ⟶ℝ rooint: (l, u) i-member: r ∈ I rsum: Σ{x[k] n≤k≤m} rdiv: (x/y) rleq: x ≤ y rless: x < y rnexp: x^k1 rsub: y req: y rmul: b radd: b int-to-real: r(n) real: fact: (n)! nat: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ nat: so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A top: Top cand: c∧ B uiff: uiff(P;Q) prop: nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T rless: x < y sq_exists: x:A [B[x]] ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] so_apply: x[s] ifun: ifun(f;I) real-fun: real-fun(f;a;b) rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) subinterval: I ⊆  i-member: r ∈ I rccint: [l, u] rooint: (l, u) label: ...$L... t req_int_terms: t1 ≡ t2 true: True btrue: tt ifthenelse: if then else fi  assert: b isl: isl(x) i-finite: i-finite(I) pointwise-req: x[k] y[k] for k ∈ [n,m] subtract: m rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermSubtract: left "-" right rtermVar: rtermVar(var) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  integral-from-Taylor-1 fun-converges-to_functionality rooint_wf rsub_wf radd_wf rsum_wf rmul_wf rdiv_wf int_seg_subtype_nat istype-false member_rooint_lemma istype-void trivial-rsub-rless trivial-rless-radd rless_wf int-to-real_wf fact_wf rless-int int_seg_properties nat_properties nat_plus_properties decidable__lt decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le intformless_wf int_formula_prop_less_lemma rnexp_wf int_seg_wf i-member_wf rccint_wf rmin_wf rmax_wf left_endpoint_rccint_lemma right_endpoint_rccint_lemma req_functionality rsum_functionality2 rmul_functionality req_weakening rnexp_functionality rsub_functionality req_wf ifun_wf rccint-icompact rmin-rleq-rmax integral_wf istype-nat sq_stable__rless rless-implies-rless itermAdd_wf int_term_value_add_lemma rcc-subinterval rmin-i-member rmax-i-member rleq_wf subtype_rel_sets_simple real_wf member_rccint_lemma rmin-rmax-subinterval fun-converges-to_wf rneq-int fact-non-zero infinite-deriv-seq_wf subtype_rel_self rfun_wf itermSubtract_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma integral-rsum all_wf le_wf nat_plus_wf false_wf nat_wf right-endpoint_wf left-endpoint_wf set_wf rsum_functionality integral-rmul-const ftc-total-integral riiint_wf derivative-rdiv-const-alt derivative-function-rsub-const add-subtract-cancel less_than_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 derivative-rnexp assert-rat-term-eq2 rtermSubtract_wf rtermDivide_wf rtermVar_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination setElimination rename because_Cache sqequalRule lambdaEquality_alt dependent_set_memberEquality_alt closedConclusion natural_numberEquality applyEquality addEquality independent_isectElimination independent_pairFormation isect_memberEquality_alt voidElimination productElimination productIsType universeIsType inhabitedIsType equalityTransitivity equalitySymmetry inrFormation_alt imageElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality applyLambdaEquality setIsType imageMemberEquality baseClosed productEquality functionIsType functionEquality setEquality intEquality dependent_pairFormation inrFormation voidEquality isect_memberEquality lambdaFormation functionExtensionality lambdaEquality dependent_set_memberEquality equalityIstype minusEquality

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}t:\{t:\mBbbR{}|  r0  <  t\}  .  \mforall{}F:\mBbbN{}  {}\mrightarrow{}  (a  -  t,  a  +  t)  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}k:\mBbbN{}.  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  (a  -  t,  a  +  t)\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
    {}\mRightarrow{}  infinite-deriv-seq((a  -  t,  a  +  t);i,x.F[i;x])
    {}\mRightarrow{}  (\mforall{}r:\{r:\mBbbR{}|  (r0  \mleq{}  r)  \mwedge{}  (r  <  t)\} 
                lim  k\mrightarrow{}\minfty{}.r\^{}k  *  (F[k  +  1;x]/r((k)!))  =  \mlambda{}x.r0  for  x  \mmember{}  (a  -  t,  a  +  t))
    {}\mRightarrow{}  (\mforall{}b:\{b:\mBbbR{}|  b  \mmember{}  (a  -  t,  a  +  t)\} 
                lim  n\mrightarrow{}\minfty{}.\mSigma{}\{(F[i;a]/r((i)!))
                *  (x  -  a\^{}i  +  1  -  b  -  a\^{}i  +  1/r(i  +  1))  |  0\mleq{}i\mleq{}n\}  =  \mlambda{}x.b\_\mint{}\msupminus{}x  F[0;t]  dt  for  x  \mmember{}  (a  -  t,  a
                +  t)))



Date html generated: 2019_10_30-AM-11_40_01
Last ObjectModification: 2019_04_03-AM-00_21_45

Theory : reals_2


Home Index