Nuprl Lemma : ln-req-iff
∀[x:{x:ℝ| r0 < x} ]. ∀[y:ℝ].  uiff(ln(x) = y;x = expr(y))
Proof
Definitions occuring in Statement : 
expr: expr(x), 
ln: ln(a), 
rless: x < y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}, 
rev_uimplies: rev_uimplies(P;Q), 
sq_stable: SqStable(P), 
squash: ↓T
Lemmas referenced : 
req_witness, 
expr_wf, 
real_wf, 
req_wf, 
rexp_wf, 
ln_wf, 
rless_wf, 
int-to-real_wf, 
rlog_wf, 
set_wf, 
rless_transitivity1, 
rleq_weakening, 
ln-expr, 
req_functionality, 
req_weakening, 
expr_functionality, 
req_inversion, 
ln_functionality, 
sq_stable__rless, 
expr-ln
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setEquality, 
sqequalRule, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  <  x\}  ].  \mforall{}[y:\mBbbR{}].    uiff(ln(x)  =  y;x  =  expr(y))
Date html generated:
2017_10_04-PM-10_38_15
Last ObjectModification:
2017_06_24-AM-11_06_12
Theory : reals_2
Home
Index