Step
*
1
1
1
2
1
of Lemma
third-derivative-log-contraction-nonneg
.....antecedent.....
1. a : {a:ℝ| r0 < a}
2. x : ℝ
3. |x - rlog(a)| ≤ r1
4. ∀x:ℝ. (r0 < (a + e^x))
5. ∀x:ℝ. ∀n:ℕ+. (r0 < a + e^x^n)
6. b : ℝ
7. e^x = b ∈ ℝ
8. r0 < b
9. a ≤ (b * e^r1)
10. (b * e^-(r1)) ≤ a
11. ((a/b) + (b/a)) ≤ r(4)
12. ((a/b) + (b/a)) ≤ r(4)
⊢ r0 ≤ (a * b)
BY
{ ((Assert r0 < a BY Auto) THEN (BLemma `rmul-nonneg` THENM OrLeft) THEN Auto) }
Latex:
Latex:
.....antecedent.....
1. a : \{a:\mBbbR{}| r0 < a\}
2. x : \mBbbR{}
3. |x - rlog(a)| \mleq{} r1
4. \mforall{}x:\mBbbR{}. (r0 < (a + e\^{}x))
5. \mforall{}x:\mBbbR{}. \mforall{}n:\mBbbN{}\msupplus{}. (r0 < a + e\^{}x\^{}n)
6. b : \mBbbR{}
7. e\^{}x = b
8. r0 < b
9. a \mleq{} (b * e\^{}r1)
10. (b * e\^{}-(r1)) \mleq{} a
11. ((a/b) + (b/a)) \mleq{} r(4)
12. ((a/b) + (b/a)) \mleq{} r(4)
\mvdash{} r0 \mleq{} (a * b)
By
Latex:
((Assert r0 < a BY Auto) THEN (BLemma `rmul-nonneg` THENM OrLeft) THEN Auto)
Home
Index