Nuprl Lemma : btr_Leaf-val_wf

[v:binary-tree()]. btr_Leaf-val(v) ∈ ℤ supposing ↑btr_Leaf?(v)


Proof




Definitions occuring in Statement :  btr_Leaf-val: btr_Leaf-val(v) btr_Leaf?: btr_Leaf?(v) binary-tree: binary-tree() assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} eq_atom: =a y ifthenelse: if then else fi  btr_Leaf?: btr_Leaf?(v) pi1: fst(t) assert: b btr_Leaf-val: btr_Leaf-val(v) pi2: snd(t) bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb false: False
Lemmas referenced :  binary-tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf btr_Leaf?_wf binary-tree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid promote_hyp sqequalHypSubstitution productElimination thin hypothesis_subsumption hypothesis hypothesisEquality applyEquality sqequalRule isectElimination tokenEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination because_Cache dependent_pairFormation voidElimination equalityEquality

Latex:
\mforall{}[v:binary-tree()].  btr\_Leaf-val(v)  \mmember{}  \mBbbZ{}  supposing  \muparrow{}btr\_Leaf?(v)



Date html generated: 2016_05_16-AM-09_06_28
Last ObjectModification: 2015_12_28-PM-06_48_19

Theory : C-semantics


Home Index