Nuprl Lemma : absval_zero

[i:ℤ]. uiff(|i| 0 ∈ ℤ;i 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  absval: |i| uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  absval_unfold2 lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf equal-wf-base int_subtype_base eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot minus-one-mul add-commutes minus-one-mul-top add-mul-special zero-mul zero-add minus-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination intEquality applyEquality dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity impliesFunctionality independent_pairEquality axiomEquality baseApply closedConclusion addEquality lambdaEquality minusEquality

Latex:
\mforall{}[i:\mBbbZ{}].  uiff(|i|  =  0;i  =  0)



Date html generated: 2017_04_14-AM-07_17_01
Last ObjectModification: 2017_02_27-PM-02_51_43

Theory : arithmetic


Home Index