Nuprl Lemma : minus_mono_wrt_le
∀[i,j:ℤ]. uiff(i ≥ j ;(-i) ≤ (-j))
Proof
Definitions occuring in Statement :
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
ge: i ≥ j
,
le: A ≤ B
,
minus: -n
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
le: A ≤ B
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
top: Top
,
subtract: n - m
,
nat_plus: ℕ+
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
le-add-cancel,
minus-minus,
minus-add,
condition-implies-le,
not-ge-2,
false_wf,
int_subtype_base,
add-is-int-iff,
decidable__le,
le-add-cancel-alt,
mul-commutes,
mul-distributes,
less_than_wf,
omega-shadow,
add-zero,
mul-associates,
not-le-2,
zero-add,
zero-mul,
mul-distributes-right,
two-mul,
add-mul-special,
add-associates,
add-commutes,
add-swap,
one-mul,
minus-one-mul-top,
le_reflexive,
subtract_wf,
add_functionality_wrt_le,
le_wf,
ge_wf,
less_than'_wf,
minus-one-mul
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
productElimination,
independent_pairEquality,
lambdaEquality,
dependent_functionElimination,
because_Cache,
minusEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
voidElimination,
isect_memberEquality,
intEquality,
multiplyEquality,
natural_numberEquality,
independent_isectElimination,
applyEquality,
voidEquality,
addEquality,
dependent_set_memberEquality,
imageMemberEquality,
baseClosed,
independent_functionElimination,
unionElimination,
baseApply,
closedConclusion,
lambdaFormation
Latex:
\mforall{}[i,j:\mBbbZ{}]. uiff(i \mgeq{} j ;(-i) \mleq{} (-j))
Date html generated:
2016_05_13-PM-03_40_16
Last ObjectModification:
2016_01_14-PM-06_39_01
Theory : arithmetic
Home
Index