Nuprl Lemma : retraction-nat-nsub
∀k:ℕ+. ∃r:ℕ ⟶ ℕk. ∀x:ℕk. ((r x) = x ∈ ℕk)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
less_than': less_than'(a;b), 
le: A ≤ B, 
rev_implies: P ⇐ Q, 
not: ¬A, 
iff: P ⇐⇒ Q, 
false: False, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
bfalse: ff, 
prop: ℙ, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
nat_plus: ℕ+, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_plus_wf, 
int_seg_subtype_nat, 
all_wf, 
int_seg_wf, 
nat_wf, 
false_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
not_wf, 
bnot_wf, 
assert_wf, 
iff_transitivity, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
less_than_wf, 
le_wf, 
and_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf
Rules used in proof : 
functionExtensionality, 
applyEquality, 
impliesFunctionality, 
voidElimination, 
independent_functionElimination, 
cumulativity, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
natural_numberEquality, 
independent_pairFormation, 
hypothesisEquality, 
dependent_set_memberEquality, 
independent_isectElimination, 
productElimination, 
sqequalRule, 
equalityElimination, 
unionElimination, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaEquality, 
dependent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mexists{}r:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}k.  \mforall{}x:\mBbbN{}k.  ((r  x)  =  x)
Date html generated:
2017_09_29-PM-05_47_03
Last ObjectModification:
2017_09_04-PM-00_14_44
Theory : arithmetic
Home
Index