Nuprl Lemma : seq-append0
∀[n:ℕ]. ∀[s,t:Top].  (seq-append(n;0;s;t) ~ seq-normalize(n;s))
Proof
Definitions occuring in Statement : 
seq-normalize: seq-normalize(n;s), 
seq-append: seq-append(n;m;s1;s2), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
top: Top, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
seq-normalize: seq-normalize(n;s), 
seq-append: seq-append(n;m;s1;s2), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
prop: ℙ, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
top_wf, 
nat_wf, 
less_than_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
base_wf, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add-associates, 
zero-add, 
add_functionality_wrt_le, 
le-add-cancel, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
equal-wf-base, 
less_sqequal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
lambdaFormation, 
productElimination, 
independent_pairFormation, 
addEquality, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
lessCases, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
imageElimination, 
independent_functionElimination, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality, 
intEquality, 
minusEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
impliesFunctionality, 
productEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s,t:Top].    (seq-append(n;0;s;t)  \msim{}  seq-normalize(n;s))
 Date html generated: 
2017_04_14-AM-07_27_07
 Last ObjectModification: 
2017_02_27-PM-02_56_22
Theory : bar-induction
Home
Index