Nuprl Lemma : bimplies_transitivity
∀[u,v,w:𝔹].  (↑(u ⇒b w)) supposing ((↑(v ⇒b w)) and (↑(u ⇒b v)))
Proof
Definitions occuring in Statement : 
bimplies: p ⇒b q, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
bimplies: p ⇒b q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
bor: p ∨bq, 
bfalse: ff, 
assert: ↑b, 
prop: ℙ, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
false: False, 
true: True
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
assert_witness, 
assert_wf, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert_of_bnot, 
false_wf, 
bor_wf, 
bnot_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
voidElimination, 
natural_numberEquality, 
axiomEquality
Latex:
\mforall{}[u,v,w:\mBbbB{}].    (\muparrow{}(u  {}\mRightarrow{}\msubb{}  w))  supposing  ((\muparrow{}(v  {}\mRightarrow{}\msubb{}  w))  and  (\muparrow{}(u  {}\mRightarrow{}\msubb{}  v)))
Date html generated:
2019_06_20-AM-11_31_22
Last ObjectModification:
2018_08_27-PM-03_39_42
Theory : bool_1
Home
Index