Nuprl Lemma : atom_eq_sq_normalize

[b1,b2,i,j:Top].  (if i=j then b1[i] else b2 fi  if i=j then b1[j] else b2 fi )


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top so_apply: x[s] atom_eq: if a=b then else fi  sqequal: t
Definitions unfolded in proof :  so_apply: x[s] has-value: (a)↓ member: t ∈ T and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] prop: bnot: ¬bb ifthenelse: if then else fi  assert: b false: False iff: ⇐⇒ Q not: ¬A rev_implies:  Q
Lemmas referenced :  decidable__atom_equal subtype_base_sq atom_subtype_base eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom has-value_wf_base is-exception_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf equal-wf-base iff_weakening_uiff assert_of_bnot top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut sqequalRule thin sqequalSqle divergentSqle callbyvalueAtomEq sqequalHypSubstitution hypothesis baseApply closedConclusion baseClosed hypothesisEquality productElimination introduction extract_by_obid dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination instantiate isectElimination cumulativity atomEquality independent_isectElimination independent_functionElimination lambdaFormation equalityElimination because_Cache atom_eqReduceTrueSq sqleReflexivity dependent_pairFormation promote_hyp voidElimination independent_pairFormation impliesFunctionality atom_eqReduceFalseSq atom_eqExceptionCases axiomSqleEquality exceptionSqequal isect_memberFormation sqequalAxiom isect_memberEquality exceptionAtomeq

Latex:
\mforall{}[b1,b2,i,j:Top].    (if  i=j  then  b1[i]  else  b2  fi    \msim{}  if  i=j  then  b1[j]  else  b2  fi  )



Date html generated: 2017_04_14-AM-07_22_12
Last ObjectModification: 2017_02_27-PM-02_55_18

Theory : call!by!value_2


Home Index