Step
*
1
1
1
2
1
of Lemma
coW-equiv-implies
1. A : 𝕌'
2. B : A ⟶ Type
3. w : coW(A;a.B[a])
4. w' : coW(A;a.B[a])
5. z : coW(A;a.B[a])
6. b : coW-dom(a.B[a];w)
7. coW-equiv(a.B[a];z;coW-item(w;b))
8. q1 : copath(a.B[a];w)
9. q2 : copath(a.B[a];w')
10. win2(coW-game(a.B[a];w;w')@<q1, q2>)
11. copath-cons(b;()) = q1 ∈ copath(a.B[a];w)
12. copath-length(q2) = 1 ∈ ℤ
13. sg-normalize(coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2)))) ≅
    coW-game(a.B[a];w;w')@<copath-cons(b;()), copath-cons(copath-hd(q2);())>
14. s : win2(sg-normalize(coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2)))))
⊢ s ∈ win2(coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2))))
BY
{ (InstLemma `sg-normalize-win2` [⌜coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2)))⌝]⋅ THEN Auto) }
Latex:
Latex:
1.  A  :  \mBbbU{}'
2.  B  :  A  {}\mrightarrow{}  Type
3.  w  :  coW(A;a.B[a])
4.  w'  :  coW(A;a.B[a])
5.  z  :  coW(A;a.B[a])
6.  b  :  coW-dom(a.B[a];w)
7.  coW-equiv(a.B[a];z;coW-item(w;b))
8.  q1  :  copath(a.B[a];w)
9.  q2  :  copath(a.B[a];w')
10.  win2(coW-game(a.B[a];w;w')@<q1,  q2>)
11.  copath-cons(b;())  =  q1
12.  copath-length(q2)  =  1
13.  sg-normalize(coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2))))  \mcong{}
        coW-game(a.B[a];w;w')@<copath-cons(b;()),  copath-cons(copath-hd(q2);())>
14.  s  :  win2(sg-normalize(coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2)))))
\mvdash{}  s  \mmember{}  win2(coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2))))
By
Latex:
(InstLemma  `sg-normalize-win2`  [\mkleeneopen{}coW-game(a.B[a];coW-item(w;b);coW-item(w';copath-hd(q2)))\mkleeneclose{}]\mcdot{}
  THEN  Auto
  )
Home
Index